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Abstract

The introduction of speech translation corpora, which have speech signals
aligned with the corresponding translation texts, coupled with the steady
growth in the computational capacity, plays a crucial role in making the train-
ing of neural end-to-end speech-to-text translation feasible. The endeavor of
this thesis is exploring neural approaches for end-to-end speech-to-text transla-
tion, which shall be referred to as Automatic Speech Translation, particularly
focusing on two types of end-to-end translation systems: (1) Offline Speech
Translation and (2) Online Speech Translation.

With respect to offline speech translation, we build strong end-to-end base-
lines for two language pairs English-to-Portuguese and English-to-German.
They are based on VGG-like Convolutional Neural Network blocks coupled
with Long Short-Term Memory layers at the encoder side and a stack of Long
Short-Term Memory layers at the decoder side. We investigate different data
augmentation techniques as well as different target token units (characters,
Byte Pair Encoding of different sizes) and validate those baselines through
our participation in international shared tasks on speech translation. Besides,
we put Self-Supervised Learning from speech representations, particularly pre-
trained English wav2vec, into a comparison with the conventional speech rep-
resentations including Mel filter-bank and MFCC features, when applied to
the speech translation task, specifically in low and medium-resource scenarios,
when we have less than 100 hours of training data. We explain through analy-
ses that wav2vec features might be better at discriminating phones, better at
aligning source and target sequences, and more robust to speaker variability.
Last but not least, we train our own Self-Supervised Learning models from
a large amount of unlabelled French speech data, which are then proven ef-
fective for a wide range of speech tasks that are included in a reproducible
framework for assessing self-supervised representation learning from speech
named LeBenchmark.

As regards online speech translation, we adapt wait-k policy, which is
originally proposed for online text-to-text translation, for the speech transla-
tion task, and advocate for using Unidirectional instead of Bidirectional Long
Short-Term Memory speech encoders for online speech translation. We pro-
pose a new encoding strategy named Unidirectional Long Short-Term Mem-
ory Overlap-and-Compensate, which allows Unidirectional Long Short-Term
Memory-based speech encoders to work more effectively in online speech trans-
lation. We evaluate both the decoding and encoding strategies firstly on the
ability to leverage pre-trained offline end-to-end speech translation models
for the online translation task. Furthermore, we propose to fine-tune these
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pre-trained models in a training mode more adapted to online translation to
further boost the performance of the online translation systems. In addi-
tion, other aspects of online speech translation, for instance, the impact of
input speech segmentation, the impact of output granularity, and different
fine-tuning scenarios, are also investigated.

Keywords: End-to-end automatic speech translation, neural machine
translation, low latency speech translation, self-supervised learning for speech
translation.



Résumée

La disponibilité de corpus de traduction de la parole dont les signaux de parole
sont alignés avec les textes traduits correspondants, couplée a I'augmentation
constante de la capacité de calcul, rend désormais possible ’entrainement de
systemes automatiques de traduction parole-texte de bout-en-bout. L’objectif
de cette these est d’explorer les approches neuronales pour cette tache de tra-
duction parole-texte, appelée traduction automatique de la parole, en se con-
centrant particulierement sur deux types de systemes de traduction de bout-
en-bout: (1) Traduction de la parole hors ligne (offline speech translation) et
(2) Traduction de la parole en ligne (online speech translation).

En ce qui concerne la traduction hors ligne, nous développons des baselines
solides pour deux paires de langues : anglais-portugais et anglais-allemand.
Elles sont fondées sur des blocs de réseaux neuronaux convolutifs couplés a des
couches récurrentes de type LSTM (Long Short-Term Memory) c6té encodeur
et a plusieurs couches LSTM coté décodeur. Nous étudions différentes tech-
niques d’augmentation de données ainsi que différentes unités lexicales cibles
(caracteres, unités BPE de différentes tailles). Nous validons nos méthodes en
participant a des campagnes internationales d’évaluation de traduction de la
parole. Nous introduisons aussi, dans cette these, 'utilisation de représenta-
tions issues de I'apprentissage auto-supervisé (en utilisant un modele de type
wav2vec) et les comparons avec des représentations conventionnelles (dont les
coefficients MFCCs et les coefficients en bancs de filtres) pour la tache de
traduction de la parole. Cette comparaison est effectuée en particulier dans
des scénarios avec des ressources faibles ou moyennes (moins de 100 heures
de données d’entrainement). Nous effectuons des analyses qui montrent que
les représentations auto-supervisées améliorent les performances de nos mod-
eles et sont aussi plus efficaces pour discriminer les phonemes et aligner les
séquences source et cible, ainsi que plus robustes a la variabilité des orateurs.
Enfin, nous entrainons nos propres modeles d’apprentissage auto-supervisés
a partir d’'une grande quantité de données brute de parole en frangais. De
tels modeles sont utiles pour un large éventail de taches concernant la pa-
role. Ces taches sont incluses dans une suite d’évaluation open-source pour
I’apprentissage auto-supervisé, nommeée ‘LeBenchmark’.

Concernant la traduction de la parole en ligne, nous adaptons la stratégie
wait-k, initialement proposée pour la traduction simultanée texte-texte, a la
tache de traduction de la parole. Pour la traduction simultanée de la pa-
role, nous préconisons l'utilisation d’encodeurs LSTM unidirectionnels plutot
que bidirectionnels. Nous proposons une nouvelle stratégie d’encodage nom-
mée "Unidirectional Long Short-Term Memory Overlap-and-Compensate’; qui
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permet aux encodeurs de parole LSTM unidirectionnels de fonctionner plus
efficacement en ligne. Tout d’abord, nous évaluons nos stratégies de dé-
codage et d’encodage sur la tache de traduction en ligne. Apres, nous pro-
posons d’ajuster ces modeles pré-entrainés (par réglage fin) dans un mode
d’apprentissage plus adapté a la traduction en ligne pour encore améliorer
les performances. Enfin, d’autres aspects de la traduction en ligne de la pa-
role sont étudiés, tels que 'impact de la segmentation des données en entrée,

I'impact de la granularité de sortie ou encore différents scénarios de réglage
fin.

Mots clés: Modeles de bout-en-bout pour la traduction automatique
de la parole, traduction automatique neuronale, traduction de parole a faible
latence, apprentissage auto-supervisé pour la traduction de la parole.
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Introduction

Context and motivation

Moving from text-to-text machine translation to speech-to-text machine trans-
lation is one-step closer to the age-old dream of humankind, which is easing
the language barrier between people of different communities.

Efforts to translate speech automatically dated back to the 1980s, when
NEC performed the first proof of concept at the 1983 ITU Telecom World
(Nakamura (2009)) and continued flourishing in the 1990s. For decades, the
field of speech translation (from speech-to-text specifically) had been witness-
ing the dominance of two-stage complex cascaded approaches, which couple
an automatic speech recognition system followed by a text-to-text machine
translation system. For this reason, this field is usually said to be much more
challenging than speech recognition and text translation standing alone as it
must solve problems coming from the two fronts, which, in their own turns,
are far from being solved.

Starting from 2016, end-to-end neural approaches, which sought to tackle
cascaded methods’ shortcomings, have been emerging and directly challeng-
ing the decades-old dominance of cascaded approaches. Pioneers of this re-
search branch (Duong et al.| (2016)); Bérard et al.| (2016); Weiss et al.| (2017));
Bérard et al. (2018))) argue that two-stage cascaded models are prone to error
propagation since the two main components of the system are trained to opti-
mize two separate objective functions. Therefore, they propose to train single
speech translation systems which directly predict hypothesis translation from
the input sequence, optimizing a single objective function. This way of doing
things has been gradually gaining more and more interest from the commu-
nity, thanks to the proven effectiveness of sequence-to-sequence models for
machine translation, and speech recognition tasks (Chorowski et al. (2015);
Chan et al.| (2016)); Zhang et al.| (2017)); Chorowski and Jaitly| (2016))), and the
efforts to build speech translation corpora (i.e, parallel data of recorded speech
coupled with translation text) which allow training end-to-end speech trans-
lation models without using source transcription. Since 2016, this research
field has been booming vigorously. However, due to the enormous challenges
imposed by this task, it is still nowhere near being solved [Sperber and Paulik
(2020).

The aforementioned end-to-end speech translation models, which enjoy the
advantage of having the whole input sequence available for conditioning the
generation of the output translation, are referred to as offline speech trans-
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lation. This is said to be less challenging than end-to-end online (sometimes
dubbed as “simultaneous” speech translation (Ren et al.| (2020); Ma et al.
(2020b); Han et al| (2020); [Ma et al| (2021])), which has to generate output
hypothesis incrementally from partial input speech. This rather newborn re-
search branch is attracting more and more attention from the community by
early but encouraging results presented at evaluation campaigns such as the
IWSLT 2020 and 2021. However, the problem of end-to-end online translation
is also far from being solved, and therefore, attempts to improve the status
quo of the field are strongly welcomed.

First and foremost, this thesis is centered on exploring neural methods for
end-to-end speech translation. This consists of a wide range of aspects, such
as searching for effective end-to-end models, how to deal with the scarceness of
the speech translation training data, how to efficiently segment the speech in-
put, which kind of target token units is most beneficial, etc. This also includes
answering a research question of how to effectively represent speech input,
which is the second focus of this thesis. Particularly, an investigation of the
newly proposed self-supervised learning from speech representations (Schnei-
der et al. (2019a)); Baevski et al. (2020b))) is conducted, which shall advocate
for replacing the conventional approaches of representing speech, such as Mel
fitler-bank features and MFCC features, etc., by these self-supervised learning
features.

Last but not least, another contribution of this thesis is on online speech
translation. Particularly, we aim to adapt wait-k policy (Ma et al. (2019)), a
decoding policy proposed for online text-to-text translation, to online speech
translation. We couple this adapted decoding strategy with a new Unidirec-
tional Long Short-Term Memory (ULSTM) overlap-and-compensate encod-
ing strategy in order to, firstly, leverage pre-trained offline end-to-end speech
translation models in online mode, and secondly, fine-tune these models in on-
line mode to further boost the performance of the online translation systems.
Other different aspects of online speech translation, for example, the impact
of input speech segmentation and the impact of output granularity, are also
studied in this thesis.

Contribution overview

This thesis studies the problem of modeling neural speech translation systems,
focusing on the following aspects:

e End-to-end modeling for offline speech translation: we focus on explor-
ing different end-to-end architectures for speech translation, as well as
different target token types. We shall argue through experiments that
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LSTM-based attentional encoder-decoder architecture is the most bene-
ficial, and that character-based models perform better than their BPE-
based counterparts in our settings. This quest for end-to-end models
for offline speech translation results in two publications for the IWSLT
2019 and TWSLT 2020 workshop.

Speech representations for translation: we compare the conventional ap-
proaches for speech representation such as Mel filter-bank or MFCC fea-
tures, with a new kind of speech representation based on self-supervised
learning. We show that wav2vec features, which are based on contrastive
predictive coding, outperform conventional features by a large margin
in low-resource conditions where speech translation training data is not
sufficiently available. This investigation of self-supervised learning from
speech features results in several publications to several prestigious in-
ternational conferences such as the Interspeech 2020, the Interspeech
2021, and the NeurIPS 2021.

End-to-end online translation system: we concentrate on balancing be-
tween translation quality and latency of end-to-end translation systems.
A wait-k like decoding strategy is proposed, and proven to be sufficient
for leveraging pre-trained offline end-to-end models for online speech
translation. In order to further improve the performance of the online
translation system, we also propose an encoding strategy namely UL-
STM overlap-and-compensate, which allows VGG-like speech encoders
with ULSTM layers to encode the partial speech input more efficiently.
In addition, we also advocate for fine-tuning offline models in a training
that is more adapted to online translation, and show that it can help
improve the performance of the online translation system while keeping
a reasonable developing cost. These works result in 2 publications to 2
high-ranking international conferences including the ICASSP 2021 and
the Interspeech 2021.

Thesis outline

This dissertation is organized into two main parts. In the first part of the
dissertation, we discuss the background knowledge that is closely related to
the work carried out in this thesis. This consists of:

e Chapter |1} Neural Machine Translation. We present in this chapter an
overview of the older methods that had been dominant before the era of
end-to-end neural machine translation, for example, the word-based and
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phrase-based statistical machine translation. This will be followed by
the state-of-the-art of neural methods, specifically end-to-end machine
translation. Besides, this chapter also describes commonly used metrics
for evaluating a machine translation system.

e Chapter [2: Neural Speech Translation. This chapter is dedicated to
presenting the state-of-the-art of neural end-to-end speech translation.
Before doing that, we also discuss briefly cascaded systems, which remain
strong baselines that end-to-end models need to surpass. After this,
we emphasize some important end-to-end architectures widely used in
speech translation, as well as the challenges and their corresponding
solutions. This chapter ends with an overview of the speech translation
corpora.

e Chapter [3} Online Neural Machine Translation. This chapter aims to
present the state-of-the-art of online neural machine translation. In this
chapter, our focus is on the discussion about different online decoding
strategies of both deterministic and dynamic nature. Besides, we also
mention how an online machine translation system can be automatically
evaluated.

e Chapter [4 Online Neural Speech Translation. In this chapter, we dis-
cuss briefly early attempts on online speech translation systems, before
giving an overview of cascaded online speech translation models. This
will be followed by the discussion about end-to-end models for online
speech translation, which are closely related to what we are aiming to
do in this thesis.

e Chapter Self-supervised Learning Speech Representation. In this
chapter, we first give an overview of the conventional approaches of
representing speech data. After that, a detailed discussion centered on
self-supervised learning from speech methods, which are promising to
replace the conventional approaches for speech representations, shall be
given.

The second part of the thesis aims to detail the scientific contributions of
this thesis, particularly in the following aspects:

e Chapter [6f Offline Neural Speech Translation. We explore different
end-to-end architectures for automatic speech translation, The discus-
sion will be confined in the context of our participation in the IWSLT
2019 and IWSLT 2020 evaluation campaigns, where automatic transla-
tions generated by these end-to-end models are evaluated and compared
with methods from other research groups.
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e Chapter Self-supervised Learning Speech Representation. This
chapter aims to discuss our contributions in leveraging the pre-trained
self-supervised learning English model to generate speech features for
the speech translation task, as well as our efforts to train our own SSL
models from French speech. We show in this chapter results that are in
favor of using self-supervised learning speech representations instead of
the conventional ones.

e Chapter [8: Online Neural Speech Translation. We discuss in this chap-
ter our contributions in terms of both decoding and encoding approaches
for online speech translation, which make effective use of pre-trained of-
fline speech translation models in the online translation task. We also
show in this chapter how these pre-trained models can be fine-tuned
in a training more adapted to online translation to further improve the
performance of the online translation system.

We conclude this thesis in Conclusion, where we summarize our contribu-
tions as well as discuss our perspective on the future work.



Part 1

State of the Art



CHAPTER 1

Neural Machine Translation

This chapter lays out the background for our works, giving an overview of the
state-of-the-art methods for Neural Machine Translation.

1.1 Definition

Human beings have dreamed to be able to seamlessly communicate between
different languages for ages. Efforts to realize this dream by using machines
to translate across languages dated back almost as far as electronic computers
came into existence. During World War II, computers were used in Britain
to crack the German Enigma code. This, to Warren Weaver - one of the pio-
neers in machine translation, seemed like an appropriate metaphor for machine
translation. In his 1949 memorandum, he wrote:

When I look at an article in Russian, I say: ‘This is really written
in English, but it has been coded in some strange symbols. I will
now proceed to decode’. [Weaver, 1949]

Machine Translation, as the name might reveal, is all about using machines
(mostly computer software) to automatically translate text or speech from
one language to another. However, in literature, this term is used somewhat
abusively to refer to text-to-text machine translation (MT) [[| while speech-
to-text machine translation is often referred as Automatic Speech Translation
(AST). Even though text-to-text translation is not the main concern of this
thesis, this chapter is dedicated to discussing fundamental aspects of text-
to-text translation, which are well transferred to the works in speech-to-text
translation.

Early efforts in the field revolved around Rule-base methods (RBMT),
which was based essentially on several linguistic rules, for example, rules for
syntactic analysis, rules for morphology, lexical rules, etc. Three representa-
tive methods of RBMT are:

More specifically, the term Machine Translation (MT) is commonly used to refer to Of-
fline text-to-text machine translation. The same for Automatic Speech Translation (AST),
which usually refers to offline speech-to-text machine translation.
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e Direct translation: uses large bilingual dictionaries to translate word-by-
word a source sentence to a target sentence. This is done by mapping
each source word to its target word, without complicated analysis and
syntactic reorganisation.

o Transfer-based translation: is an indirect approach, which translates
in multiple stages, for example, the translation system first analyzes
the source sentence to determine its structure, and then transfers the
resulting structure to the target language, and finally, generates the
target language sentence based on the transferred knowledge.

e [nterlingual translation: is another indirect approach, which is based
on abstract language representations independent from both source and
target language. In this approach, the translation process is done in two
stages: (1) encoding the source sentence onto an interlingua, and then
(2) decoding the target from interlingua.

Interlingua

N

Semantic Semantic transfer Semantic
Semantic transier

structure structure

Syntactic Syntactic transfer Syntactic

structure structure

/ Direct (lexical transfer) \

Source Target

Figure 1.1: The Vauquois triangle (Vauquois (1968)).

Up until the late 1980s, M T systems were mostly RBMT, whose differences
(in terms of the depth of analysis and abstraction of the language) can be
illustrated by the famous Vauquois triangle (Vauquois| (1968)) (Figure [L.1)).
Since 1989, RBMT’s dominance has been challenged by the emergence of the
new data-driven methods, most aggressively by Statistical MT (SMT), whose
dominance has been broken by yet another branch of research called Neural
MT (NMT) since the 2010s. The remaining of this chapter is dedicated to
discussing different aspects of both SMT and NMT methods.
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1.2 Statistical Machine Translation

One of the groundbreaking works that challenged the dominance of rule-based
MT was done by a group at IBM (Brown et al.[(1993)). The distinctive feature
of their works was to solely use statistical methods as the means of analysis
and generation without caring about linguistic rules (Hutchins| (2007))). Using
Bayes’s rule, Brown et al.| (1993) formulate the problem of translating a French
sentence to an English sentence as the following:

Pe)P(fle)
Z0 (1.1)

with P(e|f) being a probability, which can be interpreted as the probability
that e is produced as a translation by a translator presented with f. Since
P(f) is independent of e, finding the translation é is equivalent to maximizing
the product P(e)P(fle). We thus arrive at what is called by Brown et al.
(1993) the “Fundamental Equation of Machine Translation™

Plelf) =

¢ = argmax P(e)P(fle) (1.2)

e

Note that, mathematically speaking, the problem is now reversed: instead
of modeling P(e|f) (the probability that an English translation e is derived
from a French sentence f) directly, we model P(f|e) (the likelihood that a
translator produces the French translation f given the English sentence e).
This way of doing things is called a noisy-channel model, a concept borrowed
from information theory (Shannon|(1948)). When applying the noisy-channel
model to the translation task, we somewhat assume that the foreign speaker
actually wanted to utter an English sentence, but through a noisy channel,
things got distorted and the speaker ended up speaking a French sentence
(Koehn, (2009)).

Equation implies two core components of a SMT system:

e The language model presented by P(e) guarantees the fluency of the
English translation.

e The translation model presented by P(f|e) takes charge of finding an
adequate translation regardless of its fluency.

1.2.1 Language model

As stated earlier, the role of a language model is to assess the plausibility or
fluency of a sentence, for instance, an English sentence e as the above example.
Let e = (e1,e€2,...,€)) be a sequence of English words. A common practice
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to estimate the joint probability P(e) is to decompose the whole-sentence
probability into single-word probabilities, using the Markov chain:

P(e) = P(ey, eq, ...,e‘e‘) = P(e1) x P(esler) X ... X P(e|e‘\el,ez, ...,e‘e|_1)

lel

= H P<€i|€<i)
- (1.3)

assuming that the distribution of a given word e; is conditioned only on
its preceding words e_; = (ey, e, ...,e;_1). The major disadvantage of con-
ditioning on all previous tokens is that the computation complexity grows
exponentially with respect to the length of the sequence. To deal with this
problem, which is referred to as the curse of dimensionality, the most common
method for language modeling in the early days was to use n — gram language
models. These models condition each word’s probability on the history of the
most recent (n — 1) words, instead of considering the whole history:

le|

P(€1,€2, ...,6‘5‘) = H-P(ei|6i—n+1; ...,61‘_1) (].4)

i=1
For instance, when using a trigram language model, one can estimate
P(e;le;—2,€;—1) as the following [}

count(e;—a,€;-1,€;)

P(ei]ei,g,ei,l) = (15)

count(e;_2,€;_1)

with count(e;, ..., ex) is the number of occurrences of the sequence e;, ..., ey
in the training data.

Since it is completely independent of the source language, the training
of the target language model is done solely using monolingual data in the
target language, which is much more common than bilingual data. In practice,
with the help of neural networks, much more complex methods are used for
language modeling, for example, Neural Probabilistic Language Model (Bengio
et al.| (2003))), Recurrent Language Model Mikolov et al. (2010), Convolutional
Language Model (Kalchbrenner et al.| (2016); Gehring et al. (2017)).

1.2.2 Translation model

Early efforts in building SMT systems revolved around word-based methods,
whose foundation was laid by the five IBM models (Brown et al. (1993))),

2In practice, however, some smoothing techniques (Chen and Goodman| (1999))) are more
frequently applied to estimate P(e;|e;_2,e;_1) rather than the direct use of Equation
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which consider the translation problem as word-level alignment of the source
and target sentence. These models restrict themselves to the one-to-many
alignment, in which, one source word may align to several target words but
not the other way around. Recall that our translation model is a noisy channel
which reverses the translation direction, we consider the following example of
word-alignment from English to French (where the original task is to translate
from French to English):

NULL, The; programg hasy been; implementeds; -6

S TN N

Et; le, Dprogrammes G,  étés  miSg Ny applicationg

Figure 1.2: Example of word-aligment from English to French

In the above example (Figure , for French word f; at position j, there
exists an alignment a;: j — ¢, that connects this word with an English word
at position 7. In case the French word is not aligned with any English word, a
special NULL (position 0th in Figure token is introduced that is treated
just like another input word. Brown et al.| (1993)) consider every alignment to
be correct with some probability, and the job of a training process is to learn
from the training data how to put higher probabilities on highly probable
alignments and vice-versa. They formalize their translation models as the
following:

= P(f.ale) (1.6)

The probability of a translation is the sum over all the probabilities of all
possible alignments. The way we compute the probability of an alignment
(P(f,ale)) depends on the IBM model being used. |Brown et al.| (1993) detail
their five models of increasing complexity, whose advances are summarized as

the following (Koehn! (2009)):

IBM Model 1: lexical translation (the translation of words in isolation);

IBM Model 2: includes the absolute alignment model, which takes into
account the word positions;

IBM Model 3: includes the fertility model, which models the number of
French words each English word is aligned to;

IBM Model 4: includes the relative alignment model;
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e IBM Model 5: fixes deficiency.

In the original work (Brown et al. (1993))), the training of these IBM models
using the Expectation Mazimization (EM) algorithm is also discussed. The
following is a quick summarization of how the EM algorithm works (Koehn

(2009)):

e Step 1: Initialize the model. A common practice is to initialize the
model using uniform distributions.

e Step 2: Apply the model to the data (expectation step).
e Step 3: Learn the model from the data (maximization step).

e Step 4: Repeat steps 2 and 3 until convergence.

Word-based models suffer from a major flaw: the reliance on one-to-many
alignments. That is to say, considering the translation model of direction
English to France, the presented IBM models cannot deal with the case where
multiple English words can be aligned with one French word (many-to-many
alignment). One solution for this problem is to use phrases (small sequences
of words), instead of words as translation units.

Phrase-based models (Koehn et al| (2003)): were born to tackle word-
based translation’s shortcomings. As stated earlier, instead of using words as
the atomic unit of translation, phrase-based translation uses phrases (small
sequences of consecutive words). Similar to word-based translation, phrase-
based translation is defined as the following:

é= arginaxP(e)P(ﬂe) (1.7)

Bayes rule is used to invert the translation direction and a language model
P(e) is also integrated. The major difference comes from the way the trans-
lation model P(f|e) is decomposed:

I
P(fylel) = [] o(.lend(start; — end;—y — 1) (1.8)
i=1

In Equation the English sentence e is decomposed into I phrases é;,
which are translated into foreign phrases f; using the phrase translation prob-
ability ¢(f;|é:). d(start; — end;_, — 1) is the relative distortion probability
distribution (distance-based reordering model), which handles reordering. Re-
ordering distance is measured on the foreign input side. In particular, start;
is defined as the position of the first word of the foreign input phrase that
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translates to the ¢th English phrase, and end;_; denotes the position of the
last word of the foreign phrase translated into the previous (i — 1)th En-
glish phrase. Koehn et al. (2003) propose to use an exponentially decay-
ing cost function for estimating d, instead of estimating it from the data:
d(start; — end;_y — 1) = alstartizerdii=1l " with o € [0,1] is chosen so that d
is a proper probability distribution. The whole idea is to penalize reordering
of phrases over large distances. The state-of-the-art phrase-based translation
(Koehn| (2010)) puts different weights (A, Ag, ALar) upon the three main com-
ponents of the model (the phrase translation table ¢(f,|é;), the reordering
model d and the language model P(e)). Furthermore, a log-linear model is
used to improve the performance:

p(z) = exp Z Aihi(z) (1.9)

h; is a feature (e.g., phrase model, language model, reordering model, etc.)
accompanied by a weight \;.

1.3 Neural Machine Translation

Statistical Machine Translation had been standing as state-of-the-art in Ma-
chine Translation for quite some time, until new methods categorized as “Neu-
ral Machine Translation” appeared and progressively challenged its domi-
nance. While SMT, with its many components, has an expensive development
cost of optimizing each component separately before combining all of them to-
gether, these neural methods enjoy the advantage of being able to be trained
directly end-to-end.

The idea of applying neural methods to MT started with the effort to use
neural networks for language modeling (Schwenk et al.| (2006)). In this work, a
neural network is trained to project words in the vocabulary onto a continuous
space. This new representation of words delivers consistent improvements in
terms of BLEU scores on their test and development set. Neural networks
are then gradually exploited to model other components of the traditional
SMT. Early neural methods to model translation model of SMT are [Schwenk
(2012); |Cho et al. (2014b). Whereas Schwenk (2012) uses a Feed-Forward
Neural network (FNN) to compute the continuous phrase representation, Cho
et al.| (2014b) do the same job with Recurrent Neural Networks (RNNs). Both
works use their new neural methods in order to rescore the phrase pairs in
the phrase table, and use this additional score as a feature in the log-linear
model.
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Moving beyond the efforts to model separate components of traditional
SMT translation, Sutskever et al. (2014) ambitiously train their sequence-to-
sequence networks in an end-to-end fashion. This sequence-to-sequence model
(also known as encoder-decoder architecture) consists of an encoder, which en-

codes the input sequence into a fixed-size vector, and a decoder (also modeled
by an RNN), which predicts target words conditioned on the encoder’s output
(Figure . This model is trained end-to-end on parallel data, maximizing a
single objective function.

Decoder

<s> what a beautiful day

Encoder N i _____ l _____ L _____ L _____ L -

quelle belle journée what  a  beautiful day < /s>

Figure 1.3: A basic sequence-to-sequence (encoder-decoder) model
Sutskever et al| (2014). An RNN encoder encodes the input
sequence (“quelle belle journée”) into a fixed-size representa-
tion, which serves as the input state of the decoder. The de-
coder (also an RNN) decodes the output sequence conditioned
on the encoder’s output representation and the previous tar-
get word until an end of sequence < /s> is predicted.

1.3.1 Sequence-to-sequence modeling

To formalize this model, assuming that we have a variable-length input se-
quence X = (x1,29,...,x7) of length T" whose ground-truth translation is a
sequence Y = (y1, Yo, ..., yr) of length 1.

1.3.1.1 Encoder
The encoder, parameterized by an RNN, encodes the input sequence X and
outputs a sequence of abstract representation h = (hy, hs, ..., hr) of X:

h; = encode(h;_1,x;) (1.10)

h; is the state of the RNN cell at time step 7. The initial state hy can be
set at random and trained with the model. encode() is the transition function
of the RNN. In practice, Long Short-Term Memory (LSTM) (Hochreiter and|
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Schmidhuber| (1997)) or its variant Gated Recurrent Units (GRU) (Cho et al.
(2014a))) are used for modeling this function. In this primitive form, the fixed-
size last hidden state hp is expected to fully capture useful information of the
input sequence X in order to predict the output sequence Y.

1.3.1.2 Decoder

The decoder, which is also an RNN, predicts a variable-length output sequence

A

Y = (1,92, ..., Y ), with g; chosen among all elements of a vocabulary V'. In
order to do this, the decoder needs to carry the following computation:

sy = decode(si—1, Y1) (1.11)

2 = generate(sg, Y1) (1.12)

Y = argmax z; (1.13)
ie|V/|

with s; is the hidden state of the decoder at each time step ¢, which is
computed by decode() (an LSTM or GRU). If the encoder and the decoder
have the same cell size, we can assign directly sqg = hy, otherwise, there should
be a projection layer in between for matching the size of hy with that of s,
for instance, so = tanh(W,hr + b,) (W, and b, are the parameters of the
projection layer). generate() takes as input the current decoder’s state s, and
the previous target token g, ; to calculate a vector z; of size |V'|. The goal of
computing z; is to score each symbol in the target vocabulary. In practice, this
can be done by using a softmax function. The decoder then outputs the sym-
bol g;, which has the highest score. At the beginning of the process, a special
symbol called beginning of sequence (<s>) is fed in the decoder, serving as
7o During training time, when we know in advance the target length, output
length 7" is set to be equal to the ground-truth length 7”. In inference time,
when 7" is unknown, the model learns to stop decoding by producing another
special symbol named end of sequence (</s>). Moreover, during training, a
common practice is to use a technique called teacher forcing (Williams and
Zipser] (1989)), which feeds the decoder (Equation[1.11]and[I.12)) with previous
ground-truth symbol y;_; instead of the previous predicted output 7;_;.

Despite being very promising, this method, as pointed by [Cho et al.
(2014a)), does not perform well when the length of the sentence and the number
of unknown words increase. The culprit is the fixed-size representation out-
put of the encoder, which is forced to represent any arbitrarily long sequences.
Bahdanau et al.| (2015) fix this by introducing an attention mechanism, which



1.3. Neural Machine Translation 25

allows the decoder to attend at any positions of the input sequence at each
time step (Figure |1.4)).

quelle belle journée

Attention

Decoder

Figure 1.4: Illustration of a sequence-to-sequence model with attention.
Instead of taking the last hidden state of the encoder as the
initial hidden state of the decoder, the attention mechanism
allows the decoder to look anywhere in the entire sequence of
hidden states generated by the encoder. At each time step,
a context vector is generated by the attention mechanism,
summarizing the input sequence conditioned on the current
hidden state of the decoder. This context vector is used to
update the decoder’s hidden state and to generate the target
symbol.

1.3.1.3 Attention-based encoder-decoder

Attention mechanism keeps the same encoder, whereas making some signifi-
cant modifications at the decoder:

¢, = attention(s;_1, h) (1.14)
sy = decode(Si—1,Yi—1,Ct) (1.15)
2 = generate(sg, Yi—1,Ct) (1.16)

1y = argmax z; (1.17)

e|V’|
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The significant modification is that instead of relying on a fixed-size rep-
resentation h of the whole input sequence, it computes at each time step t
a context ¢; based on a mechanism called Attention (Equation [1.14)). This
context is then used by the decoder to calculate its current state s; (Equa-

tion |1.15)) or to generate its next output (Equation [1.16)).
Attention function: there are several ways to implement the attention()

mechanism in Equation [1.14] In their original work, Bahdanau et al.| (2015)
formalize this mechanism as the following:

T
Ct = Zatihz’ (1.18)
i=1

exp(ey;)
Zle exp(er)

ey = v, tanh(W,os,_1 + Uyhy) (1.20)

ay; = softmax(ey) =

(1.19)

The weighted sum in Equation [I.18 can be understood as the exzpected an-
notation over all the annotations h = (hy, ha, ..., hy) (the annotation h; con-
tains information about the whole input sequence with a strong focus on the
parts surrounding the i-th word of the input sequence) with probabilities a;.
These probabilities are computed by a softmaz() function in Equation m,
whose input is energy scores generated by an alignment model. Alignment
model puts a score on the matching of inputs around position ¢ and the out-
put at position ¢. Variants of attention mechanism, for instance Luong et al.
(2015a), differ from each other on how they compute the alignment model,
whose original form is depicted in Equation [1.20

1.3.1.4 Bidirectional RNN encoder

Bahdanau et al. (2015) also propose to use a bidirectional RNN (BiRNN,
Schuster and Paliwal (1997))) instead of the presented wunidirectional RNN
(UniRNN) one (Figure[L.5]). Consisting of two RNNs, BIRNN reads the input
sequence from left-to-right (from z; to x7) and calculates a sequence of forward
hidden states (h, E, . h_;;) by its forward RNN ?, and its backward RNN 7
does everything in the reversed order, giving the sequence of backward hidden
states (hi, ha, ..., hy). The hidden state h; of each input word «; is obtained by
. . -
concatenating the corresponding forward state h; and the backward state 71_]

%
(ie, hy =[h; T, ET]T). Bahdanau et al.| (2015 show that this better represents
the word x; by relating it to both its preceding and following words.
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quelle belle journée

Attention

Decoder

Figure 1.5: Illustration of an attentional encoder-decoder architecture
with Bidirectional RNN.

1.3.1.5 Training sequence-to-sequence model

As stated earlier, one of the appealingness of the whole family of sequence-to-
sequence models is that they allow the training to be done in an end-to-end
fashion, in which all components of the model are jointly trained to optimize
a single objective function. Let assume that we have a training set D that
contains |D| sentence pairs (X;,Y;). Usually, the NMT model is trained by
estimating its parameters 6 using Mazimum Likelihood Estimation (MLE).
This term 6 includes all the parameters of the whole sequence-to-sequence
model. Finding a set of good 6 for our problem is equivalent to:

D
0 = argmaxz log p(Y;| X3 0) + Q(8) (1.21)
S E—

with () is a regularization function, for instance, L2-regularization (also
known as weight decay): Q(0) = ||0||>. We can use back-propagation and
gradient-based optimization to solve this problem (Equation . In prac-
tice, D is randomly split into smaller sets of examples, and the training iterates
through these sets to gradually update the network’s parameters 6.

These breakthroughs, which are fueled by the substantial increase of both
computational capacity and parallel training data size, encourage more and
more research diving into further improving the performance of neutral sys-
tems, which have consequently overthrown SMT to stand as the state-of-the-
art in MT in the majority of settings.
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1.3.2 Improvements
1.3.2.1 Out-of-vocabulary (OOV) problem

So far in this thesis, NMT models have been described as word-based models,
which translate a sequence of words into another sequence of words. However,
the underlying problem with such a technique is that due to computational
challenges, NMT models typically restrict the vocabulary to a shortlist of
several tens of thousands of most frequent words, for example, a shortlist of
30,000 words is used in Bahdanau et al| (2015)), and use an unknown to-
ken UNK to represent the rest. This, as shown in [Bahdanau et al.| (2015]),
makes NMT models much more sensitive to rare words, that are excluded from
the shortlist, in comparison with SMT. Early NMT works, either attempt to
modify the network to allow training with very large vocabularies (Jean et al.
(2015a)) or, while still confining their vocabularies to the size of 30,000 to
80,000 most common words, attempt to identify the unknown words and re-
place them in post-processing (Luong et al.| (2015b); Jean et al.| (2015b)).
Later on, a family of more effective solutions has arisen, whose representa-
tives are Byte Pair Encoding (BPE) (Sennrich et al.| (2016)) and its variant
SentencePiece (Kudo and Richardson (2018])). The main idea of these ap-
proaches is to break rare words up into subword units, which can be anything
from a single character to an entire word. A vocabulary of the most frequent
subwords is constructed by a training process that iterates through the train-
ing set, starting with identifying a list of all single characters appearing in
the training data. Then, the most frequent pair of characters are merged into
character n-grams. This merge operation is repeated until a fixed number of
character n-grams is reached, or when no new pair can be found. |(Chung et al.
(2016)); Luong and Manning (2016 argue that character-level translation is
more desirable for several reasons such as (1) it is naturally immune to the
OOV issue, (2) it is capable of modeling different, rare morphological variants
of a word, and (3) it does not require a perfect word segmentation, which is a
non-trivial problem itself. Luong and Manning| (2016)) propose to use hybrid
systems that generally work at the word-level but switch to the character-
level whenever the word-level NMT produces an UNK. Chung et al.| (2016))
advocate for using characters as the target side’s units, while the source side’s
remains subword units. These efforts have been realized by Lee et al.| (2017)),
who attempt to train full character-level NMT models (on both source and
target side). Recent works on character-based translation are Kreutzer and
Sokolov] (2018); |Cherry et al. (2018); |Ataman et al.| (2019)), which show that
character-based NMT are preferable to word-based NMT in terms of transla-
tion quality. However, they also underline that character-level NMT models
are more costly to train because the character sequence is longer, which in-
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curs expensive calculations on the decoder side, especially on the attention
mechanism.

1.3.2.2 Beam search

During inference (decoding) time, the presented sequence-to-sequence mod-
els generate a translation sequence )A/, also called a hypothesis, one step at a
time. Firstly, they encode the source sequence X and initiate the translation
prefix with 9y = <s>. These are inputs for estimating the output distri-
bution of the next output token p(v|yo, X). At this step, what happens is
that we sample the word that receives the highest probability, and use it as
conditioning context for computing the probability distribution for the next
output word. We continue sampling greedily output tokens like that until the
end-of-sequence token < /s> is chosen or a limited number of tokens has been
reached. Unfortunately, there is a problem with this so-called greedy decoding
approach. Sometimes, the best hypothesis might not be the one that contains
all the tokens with the highest probabilities. For example, when generating
an idiomatic phrase like “piece of cakef’] one can imagine that the first word
“prece” might have a very low probability of being chosen. For this reason,
the same as SMT, beam search is widely used in NMT as an improvement of
greedy decoding. Beam search keeps track of b, also called the beam width,
best candidates, also called partial hypotheses. When predicting the first word
of the output sequence, we sample the top b words scored by their transla-
tion probabilities. After that, each of these words is used as the conditioning
context for predicting the next word. Word translation probabilities are accu-
mulated by adding the current predicted word’s log-probability with the sum
of log-probabilities of its preceding words (at this point the log-probability
of the first word). Only b partial hypotheses that receive the best scores are
kept in the beam. If the < /s> token is generated in a hypothesis, we consider
the hypothesis to be complete, we strip it from the beam, and reduce b by 1.
We repeat this process until no hypothesis remains in the beam (Figure .
However, beam search favors short sequences as a negative log-probability is
added with each new token, making the scores more negative for longer sen-
tences. In order to tackle this problem, Wu et al.| (2016]) propose to normalize
the scores of the complete hypotheses by their lengths:

. logp(Y|X
score(Y) = %

3This example, which means “easy”, is taken from Koehn| (2020)).

(1.22)
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Ip(V) = (’” |Y|> (1.23)

p+1

with p (often set to 0) and 0 < a < 1 (referred to as the length penalty)
are hyperparameters of the model. One can optimize a on the development
set (a € [0.6,0.7] is recommended by [Wu et al| (2016)).

Figure 1.6: Tllustration of beam search with beam width b = 6 (Koehn

(2020)).

1.3.2.3 Ensemble

Ensemble is a technique in machine learning that aims to build multiple (in-
stead of just one) systems and then combine them. When apply to NMT, this
often means to train several instances of the same model, and then average
their outputs (log-probability). Intuitively, this can work because different
systems make different errors, and therefore, averaging them will help average
out the errors of individual models. Early works, such as [Sutskever et al|
(2014)); Luong et al. (2015b)) show improvement by combining the output of
individual models as the following;:

log p(w) = Z Ai log p;(w) (1.24)

with NV is the number of individual models, p;(w) is the output of model i,
which is a softmax probability of a word w, and \; is a weight associated with
this model (usually, A; = 1/N). Different instances of a model can be achieved
either by running completely different training runs (using different random
initialization, or different random shuffle of the training data), or ensembling
different checkpoints of the same training run. A slightly different and rather
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cheaper approach is to average all parameters element-wise of different check-
points of the same models, and then use the obtained single averaged model
for decoding (Vaswani et al.| (2017)).

Outputs
Probabilities
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Figure 1.7: Transformer model (]Vaswani et al.| (]2017[).)

1.3.2.4 Network extension

Beside the efforts to improve decoding, the successors of Sutskever et al.| (2014)
and Bahdanau et al.|(2015) expand their networks by going deeper (i.e, having
more layers) and bigger on both encoder and decoder side. [Zhou et al.| (2016])
stack multiple LSTM layers at both encoder and decoder side (in total 16
LTSM layers) coupling with residual connections, which give them the lead
by 43 BLEU score over a rather quite deep network of the day with 6 LSTM
layers proposed by Luong et al. (2015b) on WMT14 En—Fr. |Wu et al.| (2016)
achieve +0.8 BLEU improvement over Zhou et al.| (2016]) with a similar sized
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network, but using subword units instead of words.

Different from recurrent networks of Sutskever et al.| (2014) and |Bahdanau
et al. (2015), Vaswani et al| (2017) propose a new architecture called Trans-
former architecture, which inherits the encoder-decoder concept of sequence-
to-sequence modeling, but entirely replaces recurrence by an attention mech-
anism. This not only allows them to better parallelize their training, but also
helps them achieve the state-of-the-art performance on WMT2014 En—De
translation task. Figure illustrates the original Transformer model, which
consists of an encoder (on the left side) and a decoder (on the right side). The
encoder is composed of a stack of N identical layers (N = 6 in the original
proposal (Vaswani et al. (2017))). Each layer has two sub-layers: (1) a Multi-
Head Self-Attention mechanism (Cheng et al. (2016)), and (2) a position-wise
fully connected feed-forward network. The decoder has almost identical design
as the encoder, except that an additional sub-layer called Masked Multi-Head
Attention is stacked on the bottom of each layer. On both sides, residual con-
nection (He et al. (2016))) is applied around each sub-layer, followed by layer
normalization (Ba et al.| (2016)). Attention plays a crucial role in Transformer
models, so important that Vaswani et al.| (2017)) claim that “Attention is all
you need”. Attention is referred as a mapping of a query @ (of dimension
dr) and a set of key-value pairs (K, V) (of dimension dj and d, respectively)
to an output (of dimension d,,.qe) by a Scaled Dot-Product Attention (Equa-

tion :

Attention(V, K, Q) = softma (QKT)V (1.25)
y £y = X\ =7 :
Vg

In fact, Vaswani et al. (2017)) propose to apply Equation multiple
times. In this practice, which they name the Multi-Head Attention mecha-
nism, a set of (V, K, Q) is projected h times onto h different spaces, on which
the scaled dot-product attention is computed in parallel. The outputs are
then concatenated and once again projected to the final layer’s output (Equa-

tion [1.26)):

MultiHeadAttention(V, K, Q) = Concatenate(heady, ..., head, )W (1.26)

with head; = Attention(W/iQQ,W/iKK, WYV) is the computation of at-
tention head i-th. W& € Rimoderxdi K ¢ Rimoderxdk TV ¢ Rimoderxdv and
WO € RMvxdmodel are projection matrices. [Vaswani et al.| (2017) obtain 28.4
BLEU on the WMT2014 En—De translation task by using 8 attention heads
(h = 8), and for each head, they set dy = d, = dnoqer/h = 64.

Apart from RNN and Transformer architectures, |Kalchbrenner et al.| (2016));
Gehring et al.| (2017)); |Elbayad et al.| (2018]) propose to fully use convolutional
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neural networks, whose processing speed is so much faster than RNN-based
approaches, for translation models. While the ByteNet proposed by |[Kalch-
brenner et al.| (2016 catches up on its RNN-based counterparts’ performance
in terms of BLEU scores, (Gehring et al.| (2017)’s ConvS2S and |[Elbayad et al.
(2018)’s Pervasive Attention model even beat RNN-based models on the same
WMT2014 En—De translation task.

1.4 Evaluation

Evaluation is as important for Machine Translation as for any other develop-
ment tasks. “How good the machine translation system is?”, we might well ask
ourselves when confronted with one. This question is of great importance not
only during the testing time but also during the development process when
one needs to decide which model one should choose. Due to the inherent
ambiguity of the translation task (there is no absolute translation to one sen-
tence, in other words, there might exist many reasonable translations to one
sentence), this simple question is harder to answer than it might seem.

In Koehn (2009), Philipp Koehn lays out several goals an evaluation metric
should have, which include:

e [ow-cost: the evaluation of a system should be done as quickly and
cheaply as possible.

e tunable: the metric should be able to be used directly for system opti-
mization.

e meaningful: the metric should help answer the question “How good the
machine translation system is?”

e consistent/stable: the metric should allow the evaluation on one part of
the test corpus to be consistent with that on another part.

e inter-annotator agreement: the same conclusions should be drawn by
different evaluators using the same metric.

e correct judgment: the metric should come up with a correct judgment

about the translation.

1.4.1 Human judgment

Taking into account that human beings are main users of translation prod-
ucts, using human judgment (sometimes referred as Manual Evaluation) as
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an evaluation metric is a natural option. Judgments about the quality of the
translation system can be gathered either from professional evaluators (trans-
lators or linguists) or from crowd-source platforms. Judgments can be given
out in different formats:

Direct assessment: evaluators score a single translated sentence at a time
based on a given scale. A rather common practice is to ask evaluators to judge
the Adequacy and Fluency of each translated sentence based on a discrete scale
from 1 to 5.

Ranking: human judges are asked to rank translation candidates of two
or more translation systems on a ranking, instead of giving absolute adequacy
or fluency scores, for example, they could usually find themselves answer the
question “Is the output translation of system A better than that of B, or worse,
or indistinguishable?”

Human Translation Edit Rate (Post-editing effort): this evaluation method
measures the efforts (time or other criteria) that a human evaluator needs to
take in order to post-edit a translation candidate into a correct translation.

These methods are suitable for comparing several models in-house or dif-
ferent models in evaluation campaigns such as the WMT (Workshop on Statis-
tical Machine Translation) or the IWSLT (International Workshop on Spoken
Language Translation).

1.4.2 Automatic metrics

Human judgment suffers from one major disadvantage: it is not low-cost in
terms of both time and money as translators need to be paid a substantial
amount of money for a great deal of time they spend manually judging the
translation output sentence by sentence. For this reason, we would like to
automate the evaluation process ideally by using computer programs to know
quickly whether our system shows improvements after a change or not. Auto-
matic machine translation metrics have been developed to serve this objective.
In this section, we review several automatic metrics that are commonly used
in practice, with a major press on BLEU score, which, in the context of this
thesis, is used as the main evaluation metric for assessing the quality of the
translated text.

BLEU (Papineni et al.|(2002))): is arguably the most commonly used eval-
uation metric for MT. It is centered on the idea that “The closer a machine
translation is to a professional human translation, the better it is” (Papineni
et al. (2002)). Here, in order to assess the quality of a machine translation,
they propose to measure its closeness to one or more reference human trans-
lations according to a numerical metric. In detail, they take the geometric
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average of the modified n-gram E| precision scores (of the whole test corpus)
and then multiply the result by an exponential brevity penalty factor.

At the sentence-level, the modified n-gram precision is counted by firstly
computing the maximum number of correct n-gram (the times an n-gram
appears in any single reference translation). This number is then clipped by
the corresponding n-gram maximum reference count:

Count;, = min(Count, Max_ref_Count) (1.27)

Finally, we add these clipped counts up, and divide by the total (un-
clipped) number of candidate n-gram in the hypothesis. At corpus-level, this
computation is done as the following:

_ ZCE{C’andidates} Zn—gramec’ CountClip(n - gram)
ZC’E{Candidates} angram/eC’ Count(n - gmm’)

C'ount ;;, operation helps punish very long hypotheses which create some
n-grams repeatedly. A good thing about BLEU is that it also penalizes very
short sentences by applying sentence brevity penalty:

1 if ¢ >
BP:{ nesr (1.29)

(1.28)

n

el=r/c ife<r

with ¢ and r are the total length of the candidate translation corpus, and
the test corpus’ effective reference length respectively. The final BLEU metric
is computed as geometric average of the modified n-gram precisions, p,,, using
n-grams up to length N and positive weights w,, summing up to 1.

N
BLEU = BP x exp Y _wylogp, (1.30)
n=1

A common practice is to choose N = 4, and w,, = 1/N.

BLEU has been the most favorable evaluation metric in most translation
tasks due to its attractiveness including the use of multiple reference trans-
lations. Moreover, its geometric mean of the modified n-gram precision not
only counts the number of correct words but also rewards correct word order,
while the brevity penalty penalizes too short translation. However, some criti-
cal points of BLEU can be found in [Koehn| (2009)), for example, the score itself
does not have an intuitive interpretation (i.e, nobody knows what a BLEU
score of 20% means), etc.

4An n-gram is a contiguous sequence of n tokens, with a token is anything delimited by
whitespaces, after tokenization, for example, a word, a punctuation symbol, etc.
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METEOR (Banerjee and Lavie (2005)): is a more recent metric than
BLEU, that computes a score for unigram matching by combining both unigram-
precision and unigram-recall. Moreover, this metric is designed to counter
several BLEU’s drawbacks. By incorporating the use of stemming, METEOR
allows different forms of the same word to be matched, while BLEU would
punish them strongly. For example, the noun attractiveness and the adjec-
tive attractive carry the same meaning, but are considered mismatched by
BLEU. Furthermore, METEOR also incorporates the use of synonyms, allow-
ing, for example, appealing and attractive to be equally considered. Although
METEOR correlates better with human judgment than BLEU, its critical
weakness is that it is computed in a much more complicated manner. More-
over, it requires access to linguistic resources such as morphological stemmers
and synonym databases that are not always available for every language.

Word Error Rate (WER): is borrowed from Automatic Speech Recogni-
tion (ASR). This metric is derived from the Levenshtein distance (Levenshtein
et al. (1966)), which is defined as the minimum number of editing steps inser-
tions/deletions/substitutions (at word level) needed to match two sequences.
Even though WER is one of the most commonly used metrics in ASR, where
the word order of the hypothesis is expected to be strictly matched that of the
reference, when applied to MT, this metric shows its disadvantages. The one
big problem is that with translation, one can have two perfectly fine trans-
lated sentences with completely different word orders. This metric, therefore,
penalizes severely the translation that should not be penalized.

Translation Edit Rate (TER) (Snover et al| (2006)): measures the min-
imum amount of editing that a human would have to perform to match the
translation output with the reference. This fixes the aforementioned drawback
of WER by introducing a shift operation to the combination of addition/dele-
tion/substitution of words. With this additional shift operation in hand, TER
allows to move a contiguous sequence of words to another location within the
same hypothesis. This edition of several words has the cost as other opera-
tions (addition/deletion /substitution) which can be done only on a single word
basis. Snover et al| (2006) show that TER not only correlates reasonably well
with human judgment but it is also more intuitive than BLEU (i.e., the score
indicates the amount of work needed to correct the translations). However,
this also comes with a price: TER computation is NP-complete (Shapira and
Storer| (2002)). |[Snover et al. (2006) propose an approximation method to
compute TER which, unfortunately, does not guarantee to find the optimal
match and is still fairly expensive to be carried out.

Besides, we also have more recently proposed automatic evaluation met-
rics such as BERTScore (Zhang™ et al.| (2020)) which computes a similarity
score between each token in the hypothesis sentence with each token in the
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reference sentence. However, instead of exact string matching (e.g., in BLEU)
or heuristics matching (e.g., in METEOR), they compute the similarity be-
tween contextualized token embeddings (BERT) of the hypothesis and the
reference. Their reasons are: (1) contextualized embeddings are more robust
to paraphrase matching and (2) they capture more effectively distant depen-
dencies and ordering. Another recent automatic metric for MT evaluation is
COMET (Rei et al.|(2020))), which is a learned framework trained to optimize
the correlation with human judgments or to minimize the distance between the
“better” hypothesis and the anchors (source or reference) on the embedding
space.

1.5 Conclusion

In this chapter, we briefly present traditional methods for machine transla-
tion including Rule-based Machine Translation, which is based essentially on
linguistic rules, and Statistical Machine Translation, which exploits statistical
methods without caring about linguistic rules. Statistical Machine Transla-
tion, which is composed of a language model and a translation model, had
been standing as state-of-the-art in the field for decades, until the emergence
of Neural Machine Translation, which is presented in a greater volume of this
chapter. The dominant method in Neural Machine Translation is end-to-end
sequence-to-sequence modeling. The outstanding representative of this kind
of models consists of an encoder and a decoder, which are bridged by an at-
tention mechanism. Beside discussing several network extensions for Neural
Machine Translation, for instance, Bidirectional Long Short-Term Memory en-
coders, and the Transformer architecture, we also review different approaches
for improving the quality of the automatic translation, for example, the use of
beam search, ensemble, and subword units. Translation quality is most often
measured by BLEU, an automatic metric, which is presented in this chapter
along with METEOR, Word Error Rate, and Translation Edit Rate.



CHAPTER 2

Neural Speech Translation

2.1 Definition

Automatic Speech Translation (AST), or sometimes addressed by the term
Spoken Language Translation (SLT), refers to automatic processes of trans-
lating speech from one language into either speech or text of another. This
thesis focuses on the latter, investigating Speech-to-Text (S2T) translation.
Early attempts in AST dated back to the 1980s when NEC performed the
first proof of concept at the 1983 ITU Telecom World (Nakamura| (2009)).
Research interest in the field continued raising in the 1990s when ASR proved
itself promising. As time goes on, this field flourishes, and constraints in
terms of domain, vocabulary, speaking style, etc. have been gradually loos-
ened up (Niehues et al| (2021)). For the first several decades of development,
AST systems had been implemented as cascades of ASR systems followed by
MT systems (Figure . AST, therefore, has been considered a much harder
task than text translation as it requires solving problems that come from both
sides, ASR and MT, which are far from being solved. Furthermore, as speech
signal does not explicitly contains syntactic and semantic clues of written lan-
guage, for instance, paragraph and sentence delimiters, punctuation marks,
and capitalized words, etc., it piles up difficulties for AST to solve. For these
reasons, until recently, progress in ST had been focusing either on improving
ASR or MT models, or on optimizing the coupling of ASR and MT. However,
since 2016, with the introduction of end-to-end methods (Duong et al.| (2016);
Bérard et al.| (2016); Weiss et al. (2017); Bérard et al.[(2018))), research interest
in AST has rapidly navigated from the aforementioned two fronts of improve-
ments to improving a single model: the end-to-end AST model (Figure [2.2)).
We discuss different important aspects of AST in this chapter, review-
ing both cascaded systems and end-to-end systems. Before doing so, let us
formalize the AST task by assuming that our AST system takes as input
speech feature sequence X = (w1, s, ..., x7), and produces the best transla-
tion Y = (Y1, Y2, .-, Ys) € T from the MT hypothesis space. Speech features
sequence X can be Mel Frequency Cepstral Coefficient (MFCC), Log Mel Fil-
terbank (MFB), or Self-Supervised Learning features, etc. (details of these
features are discussed in Chapter [5)), while output Y can be a sequence of any
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subword units (e.g, characters, BPEs, etc.) similar to NMT’s outputs. In case
where an ASR system is needed, let S € H be a possible transcript from the
ASR hypothesis space. The speech translation problem is formalized as the
following:

~

Y = argmax P(Y|X) (2.1)
YeT

Depending on the methods being used, cascaded or end-to-end models,
Equation [2.1]is decomposed differently.

2.2 Cascaded systems

As mentioned earlier, before the booming of end-to-end approaches, the only
feasible solution for implementing an AST system had been to stack an ASR
system that processes the input speech signal to produce intermediate repre-
sentations, before an MT system that absorbs the ASR’s output for emitting
the final textual translation (Figure . In early AST systems, where ASR
and MT systems are trained independently, intermediate representations are
source language transcription. These systems, which are referred to as the
loosely coupled cascade by Sperber and Paulikl (2020), decompose Equation
as in Equation [2.2] 2.3]and More recent systems might use different inter-
mediate representations, for example, the hidden states of the ASR’s decoder.

Automatic Speech Jachine .
Recognition ranslatic

Source speech Source transcription Textual translation

Figure 2.1: A traditional cascaded AST system.

Y = argmax Y  P(Y|S, X)P(S|X
geTS;{(! )P(S]X) (2.2)
R~ aréngaXS;LPMT(YW)PASR(SlX) (2.3)
~ argmax »  Pyr(Y]S)Pasa(S|X) (2.4)
YeT SeH!

with H’ contains only one single entry, the 1-best ASR output.
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Several advantages of cascaded AST systems are discussed in [Niehues
(2019). The most important of all is that data for training such cascaded
models seems to be more abundant than that for training end-to-end systems.
This comes from the fact that (1) both research fields that fuel the develop-
ment of cascaded AST have longer histories of development, through which
training data for both ASR and MT have gradually been collected; and (2)
from the nature of the data itself, ASR and MT corpora are easier and cheaper
to build. Parallel data of translated text aligned with speech signals, which is
needed for training end-to-end models, on the other hand, is quite scarce.

The advantages of cascaded systems seem to be outweighed by a wide
range of essential problems against which so much effort has been devoted
to tackling. The first and arguably the most crucial drawback of cascaded
methods is error propagation. Early loosely coupled cascade AST systems
seem to suffer from this problem more severely. This is because ASR and
MT systems are built separately and the best hypothesis of the former is used
as input to the latter, and therefore, the M'T module is often unprepared for
the ill-formed inputs propagated from the ASR module. One of the solu-
tions for this problem is to use the N-best translation approach (Woszczyna
et al. (1993); [Lavie et al. (1996)) which uses a list of the N best ASR’s hy-
potheses instead of 1-best ASR’s output (i.e, increasing H' in Equation
to select and analyze the most plausible sentence hypothesis for producing
an accurate and meaningful translation. Alternatives to N-best list are word
lattices (Schultz et al.| (2004)); | Zhang et al. (2005); Matusov et al. (2005)) and
confusion nets (Bertoldi and Federico (2005)), which also attempt to build
a tighter coupling of more closely interacting ASR and MT systems. Apart
from marginalizing ASR’s outputs, another idea to mitigate error propaga-
tion is augmenting MT’s training data by injecting synthetic ASR errors in
order to train a more robust MT system (Tsvetkov et al|(2014); Ruiz et al.
(2015); [Sperber et al.| (2017))). Another critical disadvantage of cascaded sys-
tems comes from the mismatch between the data training types of ASR and
MT systems, particularly, ASR often outputs and, therefore, is trained on
unpunctuated transcripts, while punctuation is much needed for translation.
Solutions for this problem include additional modules for segmenting ASR’s
output, predicting and inserting punctuation (Matusov et al.| (2006)) to im-
prove MT text inputs, disfluency removal (Fitzgerald et al. (2009)) to avoid
translation errors caused by disfluencies rooted by spoken language. More-
over, |Sperber and Paulik| (2020]) also point out that cascaded systems suffer
from the information loss problem. Particularly, the input text of the MT
system does not convey some important characteristics of the speech signal,
for example, prosody, which might be crucially important for conditioning a
good translation. Solutions are yet to continue stacking up additional compo-
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nents that compensate for the lost information (Aguero et al. (2006)). Piling
up additional components means escalating development cost, which is ar-
guably another critical weakness of cascaded AST. Besides, training cascaded
models also requires source transcriptions, which might be abundant in some
languages, but scarce, or worse, not available at all in others, especially in
low-resource languages.

2.3 End-to-end Automatic Speech Translation

End-to-end Automatic Speech Translation models, as defined by the IWSLT
2019 evaluation campaign (Jan et al.| (2019)), are models: (1) trained without
exploiting intermediate discrete representations (e.g., source language tran-
scription or hypotheses fusion in the target language) E|, and (2) whose pa-
rameters that are used during decoding must be all jointly trained on the
end-to-end task. |Duong et al. (2016)); Bérard et al. (2016)); Weiss et al.| (2017));
Bérard et al. (2018) are pioneers for end-to-end methods, promising to get rid

of Equation [2.22.4] completely.

etk

Source speech

End-to-end

Automatic Speech Translation

Textual translation

Figure 2.2: An end-to-end AST model.

The development of such systems is owed to the fact that end-to-end
sequence-to-sequence models have been proven effective for MT, and ASR task
also achieves promising results when exploiting this kind of models (Chorowski
et al| (2015); Chan et al. (2016); Zhang et al. (2017)); |Chorowski and Jaitly
(2016)). More importantly, the efforts to make speech translation corpora (i.e,
parallel data of recorded speech coupled with translation text, details can be
found in Section available directly encourage the training AST models
without using source transcription.

The first attempt to use end-to-end models for translation is made by
Duong et al.| (2016]). However, this work only focuses on the alignment be-
tween source speech and its corresponding text translation without proposing
a complete end-to-end translation system. The first end-to-end speech-to-text

!This definition might not be relevant in some cases, for instance, when the encoder
is pre-trained on an ASR task, which, as we shall see, is a fairly common strategy for
developing an end-to-end AST system.
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translation system is trained by Bérard et al.|(2016) on a synthetic (Text-To-
Speech) speech corpus rather than the real parallel speech translation corpus.
Real end-to-end AST models built on real speech translation corpora are pro-
posed by Weiss et al. (2017) and Bérard et al.| (2018]).

2.3.1 Speech encoder

Inspired by ASR’s sequence-to-sequence models, AST pioneers (Duong et al.
(2016); Bérard et al.| (2016); Weiss et al.| (2017)); Bérard et al.| (2018)) realize
the need to adapt the encoder for working directly on speech signals. The
reason is that input speech signals can be hundreds to thousands of frames
long, so much longer than textual input sequences. This directly burdens the
attention mechanism because its complexity is linear with the length of the
input sequence. |Chan et al.| (2016) find that their attention-based decoder
struggles to extract relevant information from a large number of input time
steps. This takes a great deal of time for their training to converge to inferior
results in comparison with their proposed adaptation. [Bahdanau et al.| (2016))
observe that output representations of their encoder before adaptation are
overly precise and contain much redundant information. For these reasons,
modifications to the speech encoder have been made firstly with ASR, and
consequently being inherited by AST.

Pyramidal RNN speech encoder: is |Chan et al. (2016); Bahdanau et al.
(2016)) independently propose to use pyramidal RNN speech encoders with
minor differences. |Graves et al.| (2013]) prove that stacking multiple layers of
RNNs on top of each other improves ASR results. However, the standard
deep stack of RNNs outputs a sequence of the same length as its input (Fig-
ure 2.3(a)). [Chan et al| (2016); Bahdanau et al| (2016) find this suboptimal
for the reasons mentioned above. (Chan et al.| (2016)) propose to concatenate
the outputs of consecutive steps of each BiRNN layer before feeding to the
next layer. This helps reduce the time resolution of the representation by a
factor of 2 after each BiRNN layer, and transforms Equation of the stan-
dard deep BiRNNs to Equation formalizing pyramidal BiRNNs (with 4, j
denote the time step and the layer number, respectively). Bahdanau et al.
(2016) independently propose a quite similar architecture, putting pooling
operations between BiRNN layers as shown in Figure 2.3(b)] [Duong et al.
(2016) are the first to exploit this idea for the translation task.

hi = BiRNN(h]_,, hi™) (2.5)
Bl = pBIRNN(h_y, [h ", b)) (26)
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(b) Pyramidal BiRNN proposed by Bahdanau et al.| (2016)).

Figure 2.3: Pyramidal BiRNNs versus standard deep BiRNNs.

Stacking CNN layers speech encoder: sharing the same purpose of reduc-
ing the length of the speech representation, stacking CNNs layers in the speech
encoder is another fairly common practice (Bérard et al. (2016); Weiss et al.
(2017); Bérard et al| (2018)). Convolutional neural networks (LeCun et al.
(1989))), dubbed by CNNs, have been shown to effectively represent acoustic
signals, because they reduce spectral variations and model spectral correla-
tions in signals (Sainath et al| (2013blfa)). Zhang et al| (2017)) introduce CNN
layers everywhere in their sequence-to-sequence ASR models, adding them at
the bottom of the speech encoder (before LSTM layers), and also in between
LSTM layers. Weiss et al. (2017); Bérard et al| (2018)) adapt this idea of
adding CNN layers before LSTM layers to their AST speech encoders, stack-
ing two layers of CNN before multiple Bidirectional LSTM (BLSTM) layers.
Both of these works use a stride of (2,2) for each CNN, which, in effect, helps
reduce both the time and feature dimension of the input by the factor of 2.
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Figure 2.4: Different Transformer-based speech encoders proposed by
Di Gangi et al| (2019b). In these architectures, 2D CNN
layers are stacked at different positions, but always before
Transformer layers. fbank, POS emb, linear, 2D Attn repre-
sent input speech features, positional embedding layer, linear
layer, and 2D attention layer respectively.

Transformer speech encoder: as stated in Chapter [T} Transformer has
become a new state-of-the-art in NMT for several language pairs, and has
consequently become a very trending MT architecture. Not only giving bet-
ter translation quality in some MT settings, this architecture is faster than
their RNN-based counterparts, because it can parallelize computation along
all the time steps. For these reasons, Transformer is soon applied for ASR
tasks (Zhou et al| (2018a]b)); Dong et al| (2018). While [Zhou et al| (2018alb)
only add a linear transformation with a layer normalization to the encoder
to transform the log-Mel filterbank feature to the model dimension d,,qer,
Di Gangi et al.| (2019b]) argue that this minor modification is far from enough
for Transformer to work well on speech signals. They discuss several chal-
lenges for this, including: (1) speech input is, again, much longer than textual
input, directly adding extra complexity to the already complex computation
of Transformer models; and (2) the bidimensional dependencies along time
and frequency of speech features make them more difficult to handle. There-
fore, Di Gangi et al| (2019b)) rather adapt the Speech-Transformer proposed
by Dong et al| (2018), stacking a few 2D CNN layers at different positions
before Transformer layers of the speech encoder (Figure .




2.3. End-to-end Automatic Speech Translation 45

2.3.2 End-to-end Automatic Speech Translation models

With the speech encoders being introduced, we can now talk about the full
end-to-end AST model. Most end-to-end AST models so far are variants of
the backbone LAS (Listen, Attend, and Spell) model proposed by Chan et al.
(2016). Although it is referred to as a different term (LAS), this model is tech-
nically an attention-based encoder-decoder model. As illustrated in Figure[2.5]
this model consists of a Listener, whose job is equivalent to the encoder’s of
Bahdanau et al. (2015)’s MT model, transforming the input speech feature
sequence X into a higher level representation h = (hy, ha, ..., hy) with U < T
(Equation . In the original LAS model, Listener is modeled by a pyra-
midal BLSTM formalized by Equation Another important component
of LAS model is Speller (the upper part of Figure [2.5]), which is technically
an attention-based decoder. The core function of Speller is AttendAndSpell,
which consumes h to calculate a probability distribution over target token
sequence (Equation [2.8)).

h = Listen(X) (2.7)
P(Y|X) = AttendAndSpell(h,Y) (2.8)

The AttendAndSpell() version of Chan et al. (2016) is an attention-based
LSTM decoder, which computes at each decoder’s step i the probability dis-
tribution over the next output character conditioned on all the previous char-
acters as the following:

¢; = AttentionContext(s;, h) (2.9)
S; = RNN(Si_l, Yi—1, Ci—l) (210)
P(y;| X, y<;) = CharacterDistribution(s;, ¢;) (2.11)

with AttentionContext() is an attention mechanism calculating a context
vector ¢;, RNN() is modelized by 2 LSTM layers, and CharacterDistribution()
is a Multilayer Perceptron (MLP) with softmax over output characters.

In practice, despite borrowing the concept of the LAS model, successors of
Chan et al.| (2016]) can adapt any kind of speech encoders, some of which are
mentioned in Section 2.3.1] The Speller side can also be varied with a wide
range of choices from the types of RNN (LSTM, GRU, etc.), the depth of RNN
layers can be deeper or shallower, different kinds of attention mechanisms can
be considered, different output granularity (characters or subword units, etc.),
additional components can be utilized, or even Transformer-based decoder can
replace the RNN-based one, etc.
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Figure 2.5: Listen, Attend and Spell (LAS) model (Chan et al| (2016)).
The source input sequence X is encoded into shorter sequence
h by the pyramidal BLSTM Listener. After this, Attention-
Context creates context vector ¢; from h and s; and Speller
predicts output token y;.

2.3.3 Challenges for end-to-end models

End-to-end AST has sought to tackle the drawbacks of the traditional cas-
caded methods mentioned in Section However, it has to face great chal-
lenges too. In fact, until recently, most end-to-end models are behind cascaded
models in terms of performance. End-to-end AST is considered a much more
difficult task than the two tasks ASR and MT, whose challenges seem to be
inherited and combined by end-to-end AST models. Particularly, AST mod-
els have to map audio features into text in a different target language, which
might have different ordering and or ambiguous meaning, etc.
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Besides the aforementioned challenge that comes from the differences be-
tween speech signal and textual input requiring adaptations mentioned in
Section [2.3.1], data availability is another well-known challenge of end-to-end
methods for AST. Parallel corpora of speech aligned with translation text
which are required for training AST models end-to-end are not as abundantly
available as data for training ASR or M'T models. When such data is available,
its amount is rather modest in comparison with ASR or MT’s data. There
have been several solutions to this problem:

e Data augmentation: are techniques that can be used for augmenting
AST training data. For example, combining various AST corpora of the
same language pair (Nguyen et al.| (2019)); |[Elbayad et al. (2020b)) or us-
ing weakly supervised (synthetic) data. Synthetic data can either come
from augmenting an ASR corpus with automatic translations (Bérard
et al.| (2016)); Bérard et al.| (2018)); Jia et al| (2019); Pino et al. (2019);
Elbayad et al.| (2020b)), or augmenting an MT corpus with synthesized
speech |Jia et al. (2019); Pino et al.| (2019). Using synthetic data is shown
by [Jia et al. (2019) to be more data-efficient than multi-task training
when large MT and ASR corpora can be augmented. |Pino et al.| (2019)
show that augmenting ASR data is more effective than augmenting MT
data. Data augmentation can also be done by some tricks that oper-
ate directly on the speech signals, for instance, speed pertubation as
in Nguyen et al.| (2019); |[Elbayad et al.| (2020b)) or SpecAugment (Park
et al.| (2019)) that operates on spectral features (Bahar et al. (2019));
Elbayad et al. (2020b))).

e Multi-task learning: as defined by |Sperber and Paulik| (2020)), consists
of techniques that pair either model inputs or outputs with data from
an arbitrary auxiliary task through multi-task training. Some works,
for example, Weiss et al| (2017); Bérard et al.| (2018), incorporate ASR
and MT data into direct models by using auxiliary models sharing parts
of the parameters with the main model. The main model and auxil-
iary models are trained jointly, but auxiliary models are discarded in
inference time.

e Pre-training: is usually done in AST by pre-training either the encoder
or decoder (Bérard et al. (2018); Bansal et al| (2019)) in ASR or MT
tasks, where the training data is more abundant. These pre-trained
components are then used to initialize the corresponding components of
the AST model. Pre-training can also be done as part of the feature
extraction process, where latent representations of either speech (Sec-
tion or text (Devlin et al. (2018)) are learned from a huge amount
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of unlabelled data.

2.4 Automatic Speech Translation Corpora

The development of AST, especially end-to-end AST is owed to the creation of
speech corpora which pair speech utterances with their corresponding trans-
lation text. Table lists out several publicly available AST corpora P In
the context of this thesis, three main AST corpora are used including:

e MuST-C ﬁ (Di Gangi et al. (2019a))): is a large multilingual corpus for
AST from English into 8 different languages including German, Span-
ish, French, Italian, Dutch, Portuguese, Romanian, and Russian. This
corpus of ~ 400 hours of speech data, which is derived from English
TED Talks, was introduced as one of the main corpora for the speech
translation track of the IWSLT 2019 Evaluation Campaign.

e How2[!| (Sanabria et al|(2018)): is a large multimodal corpus of instruc-
tional videos paired with spoken utterances, English subtitles and their
crowdsourced Portuguese translations, as well as English video sum-
maries. This corpus is therefore suitable for various NLP tasks including
ASR, MT, AST and Summarization. The data part that is suitable for
training end-to-end AST contains ~ 300 hours of speech. Along with
MuST-C, this corpus was introduced as one of the main corpora for the
speech translation track of the IWSLT 2019.

e EuroParl-ST [| (Iranzo-Sénchez et al| (2020)): is a multilingual AST
corpus containing speech from debates held in the European Parliament
in the period between 2008 and 2012. In the initial release of this corpus,
the speech utterances from each of the 6 supported European languages
(English, German, French, Spanish, Italian and Portuguese) are paired
with translations from the other 5 languages of this same combination,
making up a total of 30 different translation directions. This corpus was
introduced in the IWSLT 2020 Evaluation Campaign.

2Some statistics is taken from https://github.com/kahne/SpeechTransProgress.
3https://ict.fbk.eu/must-c/

‘https://github.com/srvk/how2-dataset

5 https://www.mllp.upv.es/europarl-st/
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No Corpus Direction Size (in Speech type
P hours) P P
{Fr, De, Es, Ca, It, Ru, Zh, Pt, Fa, Et, Mn,
. (%;Z"Sj :1 NL Tr, Ar, Sv, Lv, SI, Ta, Ja, Id, Cy}=En | oo Read,
(202gOb)) - and En—{De, Ca, Zh, Fa, Et, Mn, Tr, Ar, Common Voice
Sv, Lv, Sl, Ta, Ja, Id, Cy}
mTEDx
: {Es, Fr, Pt, It, Ru, El}—En {Fr, Pt, e
2 (Salesky et al. [t} —>Es, Es—{Fr, It} {Es,Fr} Pt 765 TED talks
(2021))
3 CoVoST (Wang {Fr, De, N1, Ru, Es, It, Tr, Fa, Sv, Mn, 700 Read,
et al.|(2020a)) Zh}—En Common Voice
MuST-C
4 | (Di Gangi et al. En—{De,Es,Fr,It,N1,Pt,Ro,Ru} 504 TED talks
(2019a))
How2 (Sanabria Instructional
0 et al.|(2018)) En=Pt 300 videos
Augmented
LibriSpeech Read
6 (Kocabiyikoglu En=Fr 236 audiobooks
et al.|(2018))
BuroParlbST | 'y De, Es, It, Pt, PL, Ro, NI} {En, European
7 | (Iranzo-Sanchez Fr, De, Es, It, Pt, P1, Ro, N1} 280 Parliament
et al.|(2020)) P 20 B8 AL B L RO, proceedings
Read news,
Kosp2e (Cho textbooks, Al
8 et al.[(2021)) Ko=En 198 agent command,
Diary
Fisher + Ph
9 | Callhome (Post Es—En 160 converzztemm
et al.|(2013)) ’ )
MaSS (Boito {En, Es, Eu, Fi, Fr, Hu, Ro, Ru}—{En, Es, . BT
10—t @oto)) Eu, Fi, Fr, Hu, Ro, Ru} 12 Bible readings
LibriVoxDeEn Read
11 | (Beilharz et al. En—De 110 Al di(?l?ook@
(2019)) )
BSTC (Zhang Simultaneous
12 et al.[(2021)) Zh—FEn 68 interpretation
STC (Shimizu Simultaneous
13 et al.|(2014)) EneJp 22 interpretation
IWSLT2018
14 (Jan et al. En—De 273 TED talks
(2018))

Table 2.1: AST corpora.
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2.5 Conclusion

In this chapter, we review cascaded methods which had been state-of-the-
art for Automatic Speech Translation for a great deal of time. However,
these methods, which couple an Automatic Speech Recognition system be-
fore a Machine Translation system, attract less attention recently due to the
appearance of end-to-end Neural Speech Translation. This newly proposed
method is more appealing because it promises to tackle the shortcomings of
cascaded methods, for example, the error propagation problem and the expen-
sive development cost. However, end-to-end models require being trained on
a huge amount of speech translation data (i.e, parallel data of speech paired
with corresponding translation text), which is not easy to be satisfied in most
cases. Along with the introduction of new speech translation corpora, various
methods including data augmentation, multi-task learning, and pre-training,
have been introduced for mitigating this data availability challenge. We spend
a great volume of this chapter reviewing different end-to-end models for Au-
tomatic Speech Translation, most of which are based on the Listen, Attend,
and Spell (LAS) model. LAS model is basically a sequence-to-sequence model
similar to those used in Machine Translation, however, the speech encoders
are adapted for better dealing with input speech features.



CHAPTER 3

Online Neural Machine Translation

3.1 Definition

Previous chapters introduce offline machine translation, whose models enjoy
the advantage of having the entire source sequence exposed to them at once. In
offtine translation, target tokens are produced one-by-one conditioned on the
full source sequence and the previously decoded prefix (Figure . Online
(also known as simultaneous) machine translation, on the other hand, refers
to automatic translation systems which start generating an output hypothesis
before the entire input sequence has been consumed (Figure . Online
machine translation is extremely useful in real-life applications that require
translation tasks to be done in real-time, for example, simultaneous inter-
preting. However, gathering research evidence in psychology, linguistics and
interpretation, Kroll and De Groot| (2005) show that these “mental gymnastic”
tasks are “the most complex language tasks imaginable” even for professional
interpreters. Interpreting quality significantly decreases over time because in-
terpreters are continuously bombarded by both physical and cognitive fatigue
and stress (Moser-Mercer et al.| (1998])). Recognizing the enormous challenges
for both machine and human interpreters, |[Fiigen et al. (2007) suggest several
advantages of using machines for the online translation task, such as the pos-
sibility of using adaptation techniques to increase the overall performance of
the system, the capability of storing long sequences of words of the computer,
and the reusability in the same domain or language, etc. This encourages the
development of online machine translation systems. This chapter reviews the
state-of-the-art of online machine translation, concentrating on text-to-text
translation. Before doing so, let us formalize the task as the following:

Let (X,Y) be a pair of source-target sequences of lengths |X| and |Y|
respectively. Online machine translation consists of executing a sequence of
interleaved READ and WRITE operations, consuming tokens from the source
X = [z1, %, ..., 2)x|] and producing tokens for the target Y = [y1, 2, ..., Yy (]
Let ¢g(t) be a monotonic non-decreasing function of ¢ that denotes the num-
ber of source tokens processed by the online translation system in order to
produce the target token y;. Online machine translation systems predict y;
conditioning on the target prefix y.; and the partial source context <.
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>8-868e
Whole input sequence read (@)@~ -

(a) Offline translation can wait for the whole input se-
quence to be made fully available before starting gen-
erating the first output token.

T e

(b) Online translation must start gener-
ating output tokens from partial input.

Figure 3.1: Offline translation versus online translation.

3.2 Evaluation

In offline translation tasks, one only concerns with the quality of the trans-
lation output. Online translation, on the other hand, is required to make a
trade-off between translation quality and latency. In practice, this trade-off is
usually illustrated by a 2 — D point whose first coordinate is chosen from one
of the latency values and the second is chosen from one of the quality values.
This section reviews some metrics commonly used in research that depict this
quality-latency trade-off.

3.2.1 Quality metrics

In terms of quality measuring, common evaluation metrics that are mentioned
in Chapter [I] can be reused for evaluating the translation quality of an online
system. Amongst these automatic metrics, BLEU is still the most commonly
used. Elbayad et al.| (2020c) also suggest the use of other quality metrics such
as METEOR, TER, ROUGE-L (Lin/ (2004)) and BERTScore (Zhang et al.
(2019)) for evaluating translation quality. Most of the time, one will not find
these metrics stand alone in assessing online translation systems, but going
hand in hand with some latency metrics presented in the next subsection.

3.2.2 Latency metrics

Latency metrics aim to measure, either directly or indirectly, the delay in-
curred by the online translation system during the translation process. Some
of the most commonly used latency metrics are briefly presented as follows:
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Average Proportion (AP) (Cho and Esipoval (2016))): indirectly measures
the latency by averaging the absolute source delay incurred by each target
token:

Y]

|X\|Y| 290 (3.1

The value of AP falls between [0,1]. Computing AP is simple, however,
as observed by (Ma et al.| (2019)), this metric is sensitive to the input length.
They observe that their wait — 1 policy, when | X| = |Y'|, incurs different AP
values as the sequence length changes (for example, AP = 1 when |X| =
Y| =1, AP = 0.75 when |X| = |Y| = 2 and its value approaches 0.5 when
| X| = |Y] — o0). Secondly, Ma et al| (2019) also observe that, being a
percentage, this metric is not obvious to the user the actual delays in number
of source tokens.

Average Lagging (AL) (Ma et al| (2019))): measures the average rate by
which the online translation system lags behind their ideal wait — 0:

Zg - (3.2)

with the cut-off step 7 is deﬁned as the earliest timestep at which the MT
system has consumed the entire source sequence:

T = argmingg(t) = | X|] (3.3)

and the target-to-source length ratio v = |Y'|/| X| is a scale factor account-
ing for the source and target having different sequence lengths.

AL has an advantage of being length-invariant and intuitive. Moreover, it
directly describes the lagging behind the ideal policy. However, Cherry and
Foster| (2019)) show several disadvantages of AL. Firstly, they argue that AL
is not differentiable because of the argmin in Equation [3.3] Therefore, this
metric cannot be used for optimization purposes. In the quest for removing
7 from Equation [3.2] they discover that 7 is necessary for AL as it ignores
completely the steps beyond 7, which decrease the average lagging undesirably.
By truncating its average, AL enforces an implicit and poorly defined delay
for writing target tokens but only when ¢ > 7. |Cherry and Foster (2019) argue
that we should charge this writing cost on the translation system all the time
(i.e, both when ¢ < 7 and ¢ > 7). The following latency metric is a remedy
for such underlying problems of AL.

Differentiable Average Lagging (DAL) (Cherry and Foster| (2019)): is
designed to solve the presented problems of AL. In details, they enforce a
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minimum delay of £ = %' units for writing any target token. This transforms

the delay g(¢) in Equation [3.2}

J(t) = {g“) =1 (3.4

mazxlg(t),q'(t — 1) + %] t>1

g'(t) represents the amount of delay incurred just before writing a target
token, taking into account both the number of source tokens read (in order
to write) and the time spent writing this target token. DAL is defined as
following;:

v
1 t—1
DAL= —3 g(t) - — (3.5)
Y| = v

3.3 Online Neural Machine Translation

Some early works in online statistical machine translation recognize the word-
ordering problems when translating an SOV language such as Japanese or Ger-
man to an SVO language such as English or Chinese: the system has to wait
until the source language’s verb appears (at the end of the source sentence)
before predicting the corresponding target language’s verb (which appears
carly in the target sentence) (Figure [3.2)). Matsubara et al| (2000) tackle this
problem of translating Japanese to English by predicting the English verb
early. By contrast, Grissom II et al.| (2014, [2016) try to predict the final verb
of the source language (German) in advance in order to reduce the latency
when translating the sentence into English. |Grissom II et al. (2014) train
a system which can make different actions (Wait/Commit/Next Word/Verb)
based on the source input, target translation so far, and predictions of the un-
seen words. |Oda et al.,| (2015) extend the idea of using prediction, training a
statistical model that predicts future syntactic constituents based on features
of the input segment, and then apply this syntactic prediction on deciding
whether to wait for more input when the current context is not enough to
generate a fluent translation. He et al.| (2015) propose to rewrite the reference
translations to make their word order closer to the source language’s word
order (more monotonic (interpretation-like) translations), and train their MT
systems on this rewritten data.
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ich bin mit dem Zug nach Ulm gefahren

I am with the train to Ulm traveled

r waiting..... traveled by train to Ulm

Figure 3.2: |Grissom II et al.| (2014))’s example of translating from a Ger-
man (a SOV language) to English (a SVO language). The
verb “gefahren” appears at the end of the sentence, forcing
the system to wait until the final source word is revealed.

3.3.1 Deterministic online translation policy

In one of the pioneer works on online neural machine translation, |Cho and
Esipoval (2016) introduce a manually designed non-trainable waiting criteria
that alternates READ/WRITE operations. This decoding strategy allows
them to reuse pre-trained offline models in online decoding mode. Inheriting
the concept of agent who can make READ/WRITE decisions, Dalvi et al.
(2018)) design a static READ/WRITE agent, who first reads S input tokens,
and alternates between a same number of WRITE and READ operations
until the entire source sequence is consumed. They show that their approach
outperforms those of |Cho and Esipova (2016)), and the fact that number of
WRITE/READ can be tuned allows their approach to have better control of
translation delay. In the same spirit, Ma et al. (2019) propose to train their
online NMT network end-to-end based on the Transformer architecture. This
network integrates a wait-k decoding policy, which now becomes one of the
most commonly used decoding approaches for online MT.

wait-£: is a prefiz-to-prefiz framework that consists of an agent which reads
k source tokens at the first step, and then alternates single WRITE/READ
operations until all source tokens are consumed (Figure[3.3). The g(¢) function
and the cut-off step of this policy are formally defined as in Equation

and [3.7], respectively.

gwait—k(t> - mln{k + 17— ]., |CL’|} (36)

Tgwait—k(|x|) = |:L'| - k: _I_ 1 (37)
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Source Source Source
Tl T2 T3 Ty Ty /s> T1 T2 Ty Ty Ty </$> Ty T2 T3 Ty Ty /$>

<S>-’I <85> 1 <S$>

Y1 L’I Y1 L’I Y1
R L>| Yo L,] Y2
<}
2Ys Y—v] (] \a (]
= Ya L>| Ya Ya

Ys L’I Ys Ys
</s> \ </s> </s>

(a) Wait-1 (b) Wait-3 (c) Wait-oo

Figure 3.3: Wait-k decoding (illustration from [Elbayad| (2020)) as a se-
quence of READ and WRITE operations over a source (hor-
izontal) and target (vertical) grid. After reading the first k
source tokens, the decoder alternates between WRITE and
READ operations. In wait-oo decoding, the source is fully
read before any WRITE operation.

This framework allows the model to be trained end-to-end to optimize the
training objective over a data set D given in Equation|3.8] with the probability
of translating simultaneously X into Y given in Equation [3.9]

(D)=~ Y logp,(Y*|X) (3.8)
(X,Y*)eD
Y1
pg<Y|X) = Hp(yt|X§g(t)7 Yoi) (3.9)
t=1

Ma et al.| (2019) show that, by choosing k appropriately, they can have
control over the latency with this policy. Furthermore, end-to-end models
with wait-£ policy are shown to be able to make implicit anticipation on
the target side after being trained in online mode. This is contrasted with
forcing pre-trained offline model (train with k£ = oo) to decode with smaller
k values (test-time wait-k), which usually gives worse results (Figure |3.4)).
This, however, directly brings up a non-trivial question of how k should be
set during training time. [Elbayad et al. (2020a) propose to jointly optimize
across multiple wait — k paths instead of training separately many models
with specific £ values. They show that by doing so, the burden of manually
choosing k and training many models according to the specific chosen values of
k is relieved, whereas they can achieve a single model that performs relatively
well in comparison with training on a single manually selected path.
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1 2 3 4 5 6 7
it BSe £ ER 5 T B
Bush president in Moscow with/and Putin  meet
(a)|...wait 2 words... pres. bush met with putin in moscow
(b) .....wait whole sentence..... pres. bush met with putin in moscow
(¢)|...wait 2 words... pres. bush in moscow and po-ite meeting

Figure 3.4: An example from [Ma et al. (2019) depicting that a trained
wait-2 model (a) can correctly predict the English verb “met”
given just the first 4 Chinese words (in bold), saying “Bush
president in Moscow”, even though the Chinese word cor-
responding to “met” has yet to appear. The baseline offline
model while reading the whole input sequence (b) can produce
the same translation at the expense of a much bigger latency.
Whereas, this baseline when being tested with test-time wait-
2 (c) gives bad translation.

Wait-k is desirable for its simplicity, however, when aggressively gener-
ating only one hypothesis word at a time, it is prone to anticipation errors
because committed errors from any steps would be propagated to the later
steps, inducing more mistakes in the future. Even though the conventional
beam search can be applied on the “tail” of the output when all source to-
kens have been processed (Y>|x|-), the direct application of the traditional
beam search on earlier steps is impossible. |Zheng et al.| (2019¢]) propose Spec-
ulative Beam Search, which “hallucinates” w more steps into the future to
implicitly accumulate more scores from a target language model, which con-
solidate the confidence of the chosen current word (Figure . Inspired by
this method, Zheng et al.| (2020b) suggest to use wait-k policy but deliberately
over-generating w extra target tokens (75 = {y!,...,y"}) at each decoding
step t, beside the hard committed target token g, of step t. These extra words
(9=") are made visible to the user, but can be promptly corrected when more
context of step ¢ + 1 indicates so, while y; stays intact (Figure . This
enjoys the advantage of re-translation as the latency stays lower, but at the
same time, reduces the inconvenience for the users when only a small number
of target tokens get changed.
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world bank plan exempt debt
A7 coe W s AR 5 R 5)
<>+ bank: bank—> will: World-' bank v to to ;bank - reduce - o =——>exe mpt\ iplans .~ some
\world/b ank-. < is outl()()k\‘ pllll/ plan ‘f“ﬂ‘mpfs Cor 1 reduce : \ to -
“ the A of ‘v“ of “ cup ‘planning prepe \19 plans ‘hom » some ‘exempts
1 @  ©i1 2 3) (1) : ) |3 1

Figure 3.5: The illustration of the Speculative Beam Search with wait-
1 policy (Zheng et al.| (2019¢))). There are two extra words
(drawn in red) (w = 2) considered in order to consolidate
the confidence of the chosen word (drawn in blue). When
the source last word “/5755”(debt) is reached, the conventional

beam search is applied (drawn in green).

1 2 3 4 5 6 7 8 9 10 11
L FEROX A BEE H RE For BE HH
Jiang  Zemin to  Bush President of speech express  agreement and
t=4 Jiang Zenim expressed his welclome to
decoding time t=5 Jiang Zenim expressed his ‘ agree‘ment to President ‘
t=6 Jiang Zenim expressed his  agreement ‘ to President Bush ‘

Figure 3.6: [Zheng et al. (2020b)’s Opportunistic Decoding purposely
generates two extra words yj,y? = “welcome to” at time
= 4 along side with y, = “his” when the input z9 = “#
[]”(agreement) has not appeared yet. At t = 5, this word
appears, the decoder promptly corrects the previously made
mistake “welcome” by y5 = “agreement” and generates two ex-

tra target words y3,y2 = “to President”.

3.3.2 Adaptive online translation policy

Different from the above attempts to build deterministic waiting policies, |Gu
et al. (2016) use reinforcement learning in order to train an agent (parame-
terized by an RNN) on top of a pre-trained offline NMT model. This agent
is trained to make decisions on whether to READ another source word or
to WRITE a target word using the pre-trained base model’s outputs, while
the base model’s parameters remain untouched. Also trying to develop a dy-
namic agent, Alinejad et al.| (2018)) propose to equip their agent with another
action: PREDICT (alongside with the READ and WRITE action). In this
PREDICT action, their end-to-end online NMT predicts next words of the
input and uses this prediction to augment the context from which the de-
coder decides the next target words. Zheng et al| (2019a)) use a pre-trained
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model to generate a sequence of READ/WRITE action for each parallel text
in the corpora. From the sentence pair and this additional READ/WRITE se-
quence, they then apply supervised-learning method to learn a parameterized
policy for their simultaneous translation agent. Other the other hand, Zheng
et al| (2019b) achieve their dynamic agent by training an end-to-end model,
which can predict an additional “delay” token (from the target vocabulary),
from scratch using the restricted dynamic oracle learning policy. Their model
makes explicit WRITE actions (i.e, continuing predicting next target words)
until it predicts the “delay” token, which tells the model to commit a READ
action. To obtain an adaptive policy, [Zheng et al| (2020a) design a simple
algorithm which can heuristically choose at each step a wait — k' from a set
of wait — k policies that is most confident with its output at that step.

Adaptive policies as attention: Also attempting to develop dynamic on-
line translation, Raffel et al| (2017) encourage another research branch that
focuses on learning monotonic alignments, which enables linear time computa-
tion of weights and online decoding instead of requiring access to the full source
sequence to compute weights as the conventional attention usually does. In-
stead of monotonically attending to a single entry in memory at each output
timestep, |(Chiu and Raffel (2017) propose Monotonic Chunkwise Attention
(MoChA) which allows the model to perform soft attention over small chunks
of the memory preceding chosen to attend by a hard monotonic attention
mechanism. Also using hard monotonic attention head to adaptively schedule
the reading of source tokens, |Arivazhagan et al. (2019) introduce Monotonic
Infinite Lookback (MILk) attention, which allows a soft attention head ex-
tending from where the monotonic head stops back to the beginning of the
source sequence. Ma et al.| (2020d) propose yet another attention mechanism
named Monotonic Multihead Attention (MMA), which extends the monotonic
attention mechanism to multihead attention.
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Figure 3.7: Illustrations of adaptive policies as attention, where the pos-

sibility of the model attending to a given memory entry (hor-
izontal axis) at a given output time step (vertical axis) is
presented by each colored node (darker colors present big-
ger possibilities). (a) In soft attention, the context vector is
a weighted sum of the probabilities assigned by the model
to each memory entry at each output time step. (b) In
monotonic attention (Raffel et al.|(2017)), the model chooses
whether to move on to the next memory entry (shown as nodes
with x) or stop and attend (shown as black nodes) by inspect-
ing the memory entries left-to-right, then hard-assigning the
context vector to the memory entry that was attended to.
(¢) MoChA (Chiu and Raffel (2017)) performs soft attention
over small chunks of the memory preceding chosen to attend
by a hard monotonic attention mechanism. (d) MILk atten-
tion (Arivazhagan et al.| (2019)) performs soft attention head
extending from where the monotonic head stops back to the
beginning of the source sequence.
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3.3.3 Re-translation

Different from the above approaches, which do not allow translated text to
be modified throughout the translating process, Niehues et al.| (2016b)’s ap-
proach allows translated text to be revised (re-translated) when more context
is available during online translation to alleviate decoding constraints. Zheng
et al.| (2020c) propose an opportunistic decoding technique. This approach,
which is presented as a variant of wait-k policy, can also be considered as a
re-translation approach in which, a certain number of extra words are over-
generated at each step on purpose. This is coupled with a timely correction
ability, which corrects the mistakes in these over-generated words when more
source context is available and indicates so.

Arivazhagan et al.| (2020a)) make the first first comparison of re-translation
and online decoding strategies for simultaneous translation, in which they find
that re-translation can be as good or better than the state-of-the-art wait-k
in online translation. However, the main drawback of re-translation is that
it causes inconvenience to the user when generated outputs are corrected at
later steps.

3.4 Conclusion

In this chapter, we present the state-of-the-art of Online Neural Machine
Translation, which is distinguished from the offline translation task which
enjoys the advantage of having the full input sequence to condition the gen-
eration of the output tokens. Online Machine Translation, on the other hand,
must start generating partial output hypotheses based on partial input in
order to balance the trade-off between translation quality and latency. Our
focus is on the discussion about different online decoding strategies of both
deterministic and dynamic nature. The dominant approach of deterministic
strategies is the wait-k policy, which is a prefix-to-prefix framework consisting
of an agent which reads k source tokens at the first step, and then alternates
single WRITE/READ operations until all source tokens are read. By con-
trast, dynamic strategies aim to either train the agent to make more dynamic
READ/WRITE actions or to learn more monotonic attention instead of the
traditional soft attention which requires access to the full source sequence. Be-
side translation quality, online translation is also evaluated based on latency
which is most often measured by Average Lagging. Other automatic metrics
for latency measuring presented in this chapter include Average Proportion
and Differentiable Average Lagging.



CHAPTER 4

Online Neural Speech Translation

4.1 Definition

Similar to online (text-to-text) MT, online (or sometimes called simultaneous)
AST consists of AST systems which start generating an output hypothesis of
either text or speech before the entire input speech sequence has been made
available. Although such systems are enormously useful in real-life applica-
tions, for example, video caption translations and real-time language inter-
pretation, etc., online AST is extremely challenging as it not only preserves
the challenges of online MT but also inherits difficulties transferred from on-
line ASR. This chapter is dedicated to discussing the state-of-the-art of online
AST, stressing mainly on end-to-end neural speech-to-text approaches. Before
embarking on the details, let us formalize the task as the following:

Similar to online MT, let (X,Y") be a pair of source-target sequences of
lengths | X | and |Y| respectively. In the context of this thesis, we only concern
with speech as the source and text as the target. Therefore, the source X can
be denoted as a sequence of acoustic features X = [z1, 2, ..., x|x|| extracted
from speech samples every Ty ms. Online AST alternately switches between
interleaved READ and WRITE operations, consuming acoustic frames from
the source X and producing tokens for the target Y. Let g(¢) be a monotonic
non-decreasing function of ¢ that denotes the number of source acoustic frames
processed by the online translation system in order to produce the target token
yi- Online AST systems predict y; conditioning on the target prefix y.; and
the partial source context x<g).

4.2 Evaluation

The same as text-to-text online machine translation, online speech transla-
tion uses both quality and latency metrics to measure the performance of the
translation systems. BLEU remains the first choice when one needs to assess
the quality of the translation. Besides, METEOR or TER can also be used for
translation quality measuring. As for latency metrics, all previously presented
latency metrics (Section can be used in this task. However, while AP
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and DAL can be used directly, AL, on the other hand, needs some modifi-
cations to be more suitable for speech-to-text translation. [Ma et al| (2020a)
make some changes to adapt this metric (Section to the speech task.

Adaptive Average Lagging: Ma et al| (2020a) find that the second term
inside the sum of Equation (% =(t—1) ‘é") is not robust for speech mod-
els, which tend to generate the end of sentence token too early, for example,
after a long pause even though the entire source input has not been processed
by the model. They argue that for this reason, speech model can obtain rela-
tively good quality-latency (BLEU/AL) trade-offs, which does not reflect the
reality. Therefore, instead of using the hypothesis sequence length |Y|, they
propose to use directly the reference length |Y*| (Equation . Moreover,
they also introduce T into Equation in order to evaluate lagging based on
time instead of steps.

speech Z g Z — 1)%1—’5 (41)

Computation Aware Average Lagging: (Ma et al| (2020c)) propose a

variant of AL, which replaces the term ¢(¢)T; in Equation by the actual

time spent on generating y;. They argue that this metric reflects a more

realistic evaluation, especially in low-latency regimes, and it can distinguish
streaming capable systems.

4.3 Omnline Neural Speech Translation

Early attempts in online AST consist of optimizing segmentation methods of
the input sequence (Bangalore et al.| (2012)); Sridhar et al.| (2013)); |Oda et al.
(2014)); Fujita et al.| (2013); [Yarmohammadi et al. (2013])). While Bangalore
et al. (2012) segment the input based on silence, [Sridhar et al.| (2013)) exper-
iment with conjunction-based segmentation and comma-based segmentation
strategies. |Yarmohammadi et al. (2013) propose a segmentation method that
aims at splitting the source sentence into segments that can be monotonically
translated to the target language. [Fujita et al| (2013) develop a segmenta-
tion method based on the phrase table and reordering probabilities used in
phrase-based translation systems. Different from these heuristics segmenta-
tion methods, |Oda et al.| (2014) propose learning methods that aim directly
at maximizing the BLEU score of the translation system, while Niehues et al.
(2016a) focus on re-translation that allows initial output to be displayed at
a low latency and allows the system to iteratively revise translations by re-
translating new source text sent by an ASR component.
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Inspired by these early works, more recent efforts in online AST have been
making an extensive use of neural networks to solve this challenging task,
either by coupling neural ASR systems with neural MT systems or directly
translating the input speech incrementally using end-to-end online AST mod-
els. This section gives an overview of these two different neural methods for
online AST.

4.3.1 Cascaded models

Before the emergence of end-to-end approaches, most efforts in online AST re-
volve around cascaded systems, which exploit simultaneous text-to-text trans-
lation modules presented in Section [3] to translate the partial transcription
outputted by a streaming ASR module into target-language text (Xiong et al.
(2019); Wilken et al. (2020))). Xiong et al. (2019) propose a context-aware
translation model named DuTongChuan, which constantly reads streaming
text from an ASR model, and determines the boundaries of information units
simultaneously. These information units are detected by a detector, which
is basically a pre-trained language model (Devlin et al. (2018)) fine-tuned on
a classification task that predicts the potential separator tokens SEP. These
tokens are considered as segmentation units, which split the input sentence
into smaller sub-sentences. These sub-sentences are then translated with two
decoding strategies: (1) partial decoding which is technically a wait-k like M'T
model tailored on their settings to translate the very first sub-sentence and
(2) context-aware decoding, their proposed online MT model which translates
from the second sub-sentence till the end. Wilken et al. (2020) segment the
streaming input text from ASR by using a source chunk boundary detection,
which is modeled by an LSTM encoder followed by a softmax layer, making a
binary decision if the current source token is the end of a chunk or not. Their
translation model is attention-based, comprising of this LSTM encoder and
an LSTM decoder which is triggered whenever a source chunk boundary is
detected. On this event, the decoder consumes the output representation of
the encoder in order to produce target tokens until the end-of-chunk signal
is predicted similar to what has been done for the source side. This whole
model is trained jointly on the chunk-based bilingual data generated by their
proposed method based on word alignment to generate the source and target
chunks.

Different from the above methods, a few attempts (Nguyen et al.| (2020b);
Arivazhagan et al. (2020b))) focus on re-translation as inspired by Niehues
et al| (2016a). These works rely on cascaded systems of a streaming ASR
model followed by a neural MT model adapted for the re-translation purpose.
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Figure 4.1: SimulSpeech model (]Ren et al.| (]202()[)).

4.3.2 End-to-end models

Attempts to exploit end-to-end models to directly translate the source speech
into target text simultaneously have arisen recently, mostly adapting the text-
based wait-k to the speech task (Ren et al| (2020)); Ma et al.| (2020b); Han
et al.| (2020); Ma et al. (2021))).

SimulSpeech: proposed by Ren et al.| (2020) is one of the first end-to-end
online AST models. This model (depicted in Figure has a Transformer-
based encoder-decoder backbone, which handles the online translation task
by adapting the wait-k policy. The switching between the READ /W RITE
operations is decided by a speech segmenter, which is trained on top of the
Transformer speech encoder to align source speech frames with source text
based on CTC loss. Equation [£.2] formulates this loss, with X, }*"¢ denote the
parallel data set containing source speech X paired with source text Y*"¢. The
term B(Ysre) P(z]|X) can be interpreted as the likelihood of Y*™ evaluated
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as the sum over all the probabilities of intermediate representation CTC paths
(p(Y*7¢)). Besides, in order to stabilize the training of the attention matrix of
the online AST model, this work introduces Attention-Level Knowledge Distil-
lation, which makes use of the less challenging auxiliary simultaneous ASR and
NMT task to learn the corresponding attention matrices. These two are then
multiplied and binarized to guide the training of the main attention matrix of
the SimlSpeech model via a loss L4, kg Furthermore, Data-Level Knowledge
Distillation (Kim and Rush| (2016); [Tan et al| (2019)), which gives the third
loss term Lq44_ka 0f the total loss to train SimulSpeech (Equation , is also
used in order to further boost the performance of the main online AST model.
Details of these two losses can be found in the paper (Ren et al.| (2020)). Simul-
Speech is trained to minimized the total loss in Equation [4.3], where A1, A2, A3
denote the weights of the three losses, and serve as hyperparameters of the
model.

(X,YSTC)E(X Xysrc) ZE¢(YSTC)

L= )\1£ctc + )\Q'Cattn,k:d + )\S'Cdata,kd (43)

Simul-ST: also attempting to delevelop end-to-end online AST systems,
(Ma et al| (2020b)) evaluate the two most commonly used types of online
MT, such as Monotonic Multihead Attention (referred to as the flexible pol-
icy) and wait-k (referred to as the fixed policy), on the online AST task.
Ma et al. (2020b)’s adaptation of these online MT approaches on the speech
translation task also includes implementing an additional Pre-Decision module
(Figure [4.2)), which pre-decides either to continue reading source input frames
or let the online policy make READ/WRITE decisions based on a probability
P generated on each encoder state (pg, > 0.5 would trigger the online policy
to make a decision). Two types of Pre-Decision modules are introduced in Ma
et al.| (2020Db)), including Fized Pre-Decision which triggers the writing deci-
sion after a fixed number of frames, and Flexible Pre-Decision which uses the
alignment between encoder states and source labels to determine the source
boundaries of either word or phoneme level that trigger the writing decision.
Coupling either of the Fixed/Flexible Pre-Decision module with Fixed/Flex-
ible online MT policy, [Ma et al.| (2020b) obtain in total four different online
AST models, whose speech encoders are all pre-trained by the ASR task. It
is also worth to note that ASR training data is also required for the Flexible
Pre-Decision module to work because it relies on the aligment between source
frames and source labels.
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Figure 4.2: Illustration of Simul-ST architecture with Pre-Decision mod-
ule proposed by Ma et al.| (2020b). From each encoder hidden
state, the Pre-Decision module computes the probability py,
which decides to trigger the Simultaneous Decision Making
governed by the online policy when p;,. > 0.5. This is depicted
as blue arrows corresponding to py, = 0.9 in the Figure.

Augmented Memory Encoder: adapting the text-based wait-k policy for
the speech task, (Ma et al.|(2021))) learn a Transformer-based end-to-end on-
line AST model consisting an augmented memory encoder and a simultane-
ous decoder. The encoder is designed to sufficiently encode the input speech
sequence incrementally by exploiting an Augmented Memory Encoder origi-
nated by [Wu et al.| (2020). Illustrated by Figure , instead of attending to
the entire input sequence X, the self-attentions of this encoder are designed
to attend on a sequence of sub-utterance level segments S = [s1,...]. Each
sub-utterance s,, beside having its main context ¢, of size C', overlaps with
Sn—1 by a left context segment [,, of L frames, and with s,, 1 by a right context
segment r, of R frames. Self-attention is computed at the segment level, with
the query, key and value for each segment are defined in Equation [4.4][4.5] and
4.6l

dn = Wq [ln; Cny T'n, Un] (44)

kn - Wk [Mn—N:n—17 lm Cn, TTL] (45)
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Up = Wv [Mn—N:n—b ln7 Cn, /rn] (46)

my = Za,l’j/(vn)j/ (47)
jl

where o, = ka@n xp is referred to as the summarization query. The
key aspect of this encoder is the introduction of the memory bank M,, which
captures the information of the previous segments. A new slot of this memory
(m,) is generated at each step n as in Equation Instead of storing all
the history of the processed segments, Ma et al.| (2021) propose to keep only
N current banks instead: M,,_n., = [m,_n,...,my_1]. The self-attention z,
which represents the current sub-utterance s, is then calculated as in Equa-
tion [4.8 and [£.9) Note that only central encoder states of size C' are kept in
zn (N+ L < j < N+ L+ C) and the concatenation of the segment states
Z = |z1,...] is passed to the decoder. The decoder exploits the wait-k policy,
which makes simultaneous READ and WRITE decisions based on chunks of
a fixed number of encoder states. They propose to pre-train their models on
the ASR task to better initialize the speech encoder.

....... yi—l yl

WRITE

Decoder —\
~ READ

Encoder
States 7

| Summarization |

(|- ,Zl | (LI | ]

...........

Figure 4.3: Illustration of the streaming AST model with Augmented
Memory Encoder proposed by Ma et al.| (2021)).
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Direct application of wait-k: another extension of the wait-k policy for
the online AST task can be found in |Han et al.| (2020). However, they make
one important observation that states that usually speech sequences are much

(4.8)

longer than their text counterparts, and hence, the translation system ought
to read more than one input frame at each encoding step. For this reason,
the original text-based wait-k policy is slightly modified as in Equation [4.10
which formulates the number of frames the system consumes at each reading
step: s > 1 (Figure . Note that at step 0-th, s = k, and s = 1 reduces
Equation [4.10]to the original text-based wait-k policy. The catch-up frequency
is calculated as: ¢ = r—1, with r = |Y|/|Y*7¢] is the text-to-text source-target
emission rate which is loosely set to 1.0 in their experiments with the English-
German language pair. Beside making use of different data augmentation
techniques in order to substantially increase the amount of training data, Han
et al. (2020) also exploit Modality Agnostic Meta-Learning approach proposed
by Indurthi et al.| (2020)) for better initializing the parameters of the online
AST model. The auxiliary source tasks used for this purpose including ASR,
MT and offine AST.

Gwait—kcs(t) =min{(k+t — 1 — ct) x s,| X[} (4.10)
Source frames
X1 Ty X3 T4 s </$>
<85> 1 IN _1
Y1 I
% yz '
5 Y3 I
Ys L’I
</s> \
k s>1

Figure 4.4: Wait-k policy, when adapted for online AST by Han et al.
(2020), reads more than 1 source frames (s > 1) at each de-

coding step after the first step in order to write only one target
token (N =1).
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4.4 Conclusion

In this chapter, we present state-of-the-art of Online Speech Translation. Most
efforts so far in this field focus on building cascaded systems, which exploit si-
multaneous text-to-text translation modules to translate the partial transcrip-
tion outputted by a streaming ASR module. By contrast, attempts to exploit
end-to-end models to directly translate the source speech into target text
simultaneously have emerged very recently, mostly adapting the wait-k pro-
posed for text-to-text translation to the speech task. Early end-to-end models
either make READ/WRITE operations in a deterministic manner (i.e, mak-
ing READ and WRITE decisions on chunks of a fixed number source frames),
or are trained jointly with an additional module, for example, a CTC-based
Speech Segmenter or Pre-Decision module, which evokes dynamic READ and
WRITE decisions.



CHAPTER 5
Self-supervised Learning Speech
Representation

5.1 Definition

The same as other Machine Learning tasks, how to represent the input effec-
tively is one of the most important questions AST needs to give an answer
for. Extracting features from speech is not at all trivial, because speech sig-
nals carry a great load of information, for instance, the words spoken, the
emotional state of the speaker, the speaker’s dialect and identity, the lan-
guage used, etc., which can directly or indirectly affect the performance of
the translation system. The ultimate objective of the AST feature extraction
process is, therefore, to mitigate or eliminate information in the input signal
that is not relevant to the spoken content, and enhance the useful aspects of
the signal that contribute positively to the detection of phonetic differences.
From the beginning, AST had inherited speech representations developed for
earlier born speech processing tasks, especially ASR speech representations
Schafer and Rabiner| (1975). Davis and Mermelstein (1980) divide significant
traditional speech representations into two big groups: (1) those based on the
Fourier spectrum (Mel Filter-bank features (Filterbank), Mel-Frequency Cep-
strum Coefficients (MFCCs)), and (2) those based on the linear prediction
spectrum (Linear Prediction Coefficients (LPC), Linear Prediction Cepstral
Coefficients (LPCCs)). Recently, these handcrafted surface features are criti-
cized for not adequately capturing high-level properties of speech (Chung et al.
(2019)). For this reason, brand new approaches for representing input speech
using Self-Supervised Learning (SSL) to learn useful latent features from large
amounts of unlabelled speech data have been proposed (Chung et al.| (2019));
Chung and Glass (2020b); |Oord et al.| (2018)); Baevski et al.| (2019); |Schnei-
der et al.| (2019a)); Baevski et al. (2020b))). These newly proposed features
have been gradually beating manually specified features in speech tasks, and
therefore, making them largely redundant.

This chapter reviews several commonly used handcrafted speech represen-
tations in Section and their promising alternatives SSL features in Sec-
tion .3
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5.2 Conventional Approaches

Conventional speech representations, which are labelled by |Chung et al.| (2019)
as surface features, have been staying in practice for a long time. These
methods selectively use mathematical tools to directly transform the digitized
speech signals into a denser representation which is possible for computers
to store and process, and more importantly, suitable for the application in
question. Schafer and Rabiner| (1975 examine several speech representations
of this kind, which are still in use these days by different speech tasks, in an
increasing order of the complication of computation. In the context of this
thesis, we only review two of the most commonly used speech features for
ASR and AST, Log Mel Filterbank features (commonly dubbed as Filterbank)
and Mel-Frequency Cepstrum Coefficients (MFCCs), both of which are based
on short-time analysis. While the former is based on spectrum analysis, the
latter applies Inverse Discrete Fourier Transform (IDFT) on the former’s
output, and therefore, is based on cepstrum analysis (cepstrum is a wordplay
of spectrum, where the four initial letters c-e-p-s is backward-written from

s-p-e-c).

¥
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speech signal ®_ DFT ~ filterbank
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: log() =
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Figure 5.1: The calculation pipeline of Log Mel Filterbank features and
Mel-Frequency Cepstrum Coefficients (MFCCs).

Figure [5.1] illustrates the calculation pipeline of Filterbank and MFCC
features. This process consumes pre-emphasized digitized speech signals (a
speech processing trick which helps boost the amount of energy in the high
frequencies), and chops them up into smaller frames. This practice is built on
the concept of short-time analysis which assumes that speech waveform can
be considered stationary over a sufficiently short-time interval, even though
it is not so over a long-time interval. Framing the speech signal is done by
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using sliding windows (discrete mathematical functions) whose width is usu-
ally chosen between 20 milliseconds(ms) to 40ms. In practice, three common
windows are used including rectangular window, hanning window and ham-
ming window (Taylor| (2009)), which are distinguished from each other by the
mathematics formalizing them, and consequently transform the signal differ-
ently. Another common practice of using sliding windows is to overlap them.
Popular settings are 25ms for the window size and placing consecutive win-
dows 10ms after each other.

The next step, which is abbreviated as DFT in Figure [5.1], is to calculate
the power spectrum of each frame. This, also called as periodogram estimate
of the power spectrum, helps identify which frequencies are present in the
frame. This is inspired by an organ in the human’s ear called cochlea which
has small hairs located at different spots. These hairs vibrate depending on
the frequencies of the incoming sound, and depending on the location in the
cochlea that is triggered, different nerves fire electrical signals to the brain
informing that certain frequencies are present. Discrete Fourier Transform
(DFT) is the core of this step, which transforms the each frame z;(n) in
time domain (¢ denotes the ¢ — th portion of the whole input signal z(n),
which gets chopped by the window h(n) with length N) to frequency spectrum
(Equation . The power spectrum is calculated on the frequency spectrum

(Equation [5.2).

Xi(k) = xi(n)h(n)e 7>/ (5.1)
Pi(k) = I X(h)P 5:2)

where X;(k) denotes the frequency spectrum of windowed frame x;(n)h(n),
Pi(k) is its corresponding power spectrum, and K is the length of the DFT.

The third step is also motivated by human’s perception of sound. In de-
tail, we cannot tell the difference between two closely spaced frequencies, and
perceived frequency resolution decreases as the frequency increases. This is
depicted by the Mel scale, which relates the perceived frequency with its actual
measured frequency (Equation .

M(f) = 1125In(1 + f/700) (5.3)

In practice, we apply triangular bandpass filters to the previously calcu-
lated periodogram bins to get an idea of how much energy exists in various
frequency regions. These filters, which are called Mel filterbank, are illus-
trated in Figure 5.2l As shown in the figure, the first filter is very narrow,
followed by increasingly wider filters. This is to mimic the decay of perceived
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Figure 5.2: Mel filterbanks
(illustration from https://haythamfayek.com/2016/04/21/
speech-processing-for-machine-learning.html).

frequency resolution in humans as the frequency increases. Figure draws
40 mel filterbanks, but in pratice, one can use from 20 to 40 of these band-
pass filters. The number of filters will result in the number of scalar values
representing the energies of each frame.

Coming next is the log step, where we take the logarithm of the filterbank
energies calculated from step 3th. This is because human’s hearing is not
linear. The logarithm is hoped to make our features match more closely to
the sound humans actually perceive.

If we only concern with Log Mel Filterbank features, we can apply mean
and variance normalization to the output of the log step above, which results
in our desired speech features.

By contrast, if the Mel-Frequency Cepstrum Coefficients representation is
desired, the IDFT step needs to be involved. One of the reasons for doing
this is that, as shown in Figure [5.2] filterbanks are all overlapping, and this
consequently makes the filterbank coefficients computed in the previous step
highly correlated, which could be problematic for some Machine Learning al-
gorithms. This could be tackled by applying IDF'T, or specifically its Discrete
Cosine Transform (DCT) equivalent, which is commonly used in practice, in
order to decorrelate the filterbank coefficients. Here we do cepstrum anal-
ysis, which, on the surface, seems like reversing the spectrum analysis’ job
(“cepstrum”is indeed a wordplay of “spectrum” which has the first four letters
c-e-p-s being backward-written from s-p-e-c). However, one should not expect
to obtain the original input speech as the result, because the mel filterbank
and the log operation were in place. Note that even though we usually choose
to use 20 to 40 mel filterbanks in the previous step, typically for ASR, we
only keep 12 coefficients for each frame, and these are called Mel Frequency
Cepstral Coefficients.

The two last steps on the bottom of Figure [5.1] are optional, which give
27 other coefficients to make up the total 39 Mel-Frequency Cepstrum Coeffi-
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cients which are very commonly used in practice. Note that appended to the
12 resulting coefficients of the previous step is the energy of each frame, that
makes the 13-th coefficient. 13 others would come from the first difference of
signal features Deltas, which describes the dynamic transitions between con-
secutive frames. Finally, the last 13 coefficients, called Delta-Deltas would
be calculated in the same manner, but on dynamic changes of Deltas instead
of on the static coefficients.

5.3 Self-supervised Learning Approaches

Self-supervised Learning has been recently proposed as an interesting alter-
native for data representation learning. Proven useful learned representations
can be found both in vision (Bachman et al.| (2019)); Chen et al.| (2020])) and
in NLP (Devlin et al| (2018); Peters et al.| (2018])). The attractiveness of
SSL in general and SSL from speech in particular is that it can leverage huge
amounts of un-annotated data, which, as stated earlier, are not easily avail-
able for downstream tasks such as ASR or AST. This can be done by resolving
pseudo-tasks, which do not require human annotation, as pre-training a fea-
ture extractor, which is then used to extract useful speech representations for
the real (downstream) tasks. The two most commonly used approaches for
SSL from speech are Autoregressive Predictive Coding (APC) and Contrastive
Predictive Coding (CPC). The former’s pseudo-task considers the sequential
structure of speech and predicts information about a future frame (Chung
et al.| (2019); Chung and Glass| (2020b)), whereas the latter’s consists of dis-
tinguishing a future speech frame from distractor samples (Oord et al. (2018));
Baevski et al.| (2019); Schneider et al.| (2019a))) which is an easier learning ob-
jective compared to APC. These representations have been proven to improve
the performance in several speech tasks (Chung and Glass| (2020a))), while
being less sensitive to domain and/or language mismatch (Kawakami et al.
(2020)) and being transferable to other languages (Riviere et al.| (2020)).
This section gives an overview of these SSL approaches with a major stress

on CPC and some of its variants which are mainly used in our experiments
related to SSL.

5.3.1 Contrastive Predictive Coding

Oord et al.|(2018) aim at learning useful representations from high-dimensional
un-annotated data by predicting the future in latent space. More particu-
larly, they desire to learn representations that encode the underlying shared
information between different parts of the data, and discard low-level more
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local information and noise. With the hope to force their models to relate
more global structure of the signal as predicting further in the future might
require, they propose Contrastive Predictive Coding (CPC), which optimizes
their autoregressive models by a probabilistic contrastive loss. Their approach
is applicable for a wide range of downstream tasks of different modalities in-
cluding vision and NLP tasks. We focus on the underlying key aspects of this
approach when being applied to speech tasks in the section.

Figure illustrates |Oord et al.| (2018)’s CPC model, which consists of a
non-linear encoder and a context network, denoted as ge,. and g,, in the figure,
respectively. The encoder ge,.: X — Z is responsible for mapping raw input
sequence r = Iy, T2, ..., Ty to a sequence of potentially lower frequency la-
tent feature representation z = 21, 2o, ..., Zg|t 2 = genc(:ﬁ). The autoregressive
context network ¢, : Z — C combines multiple time-steps of the encoder’s
output to obtain contextualized representations ¢; = ¢u,(2<¢). These two com-
ponents are trained jointly to make predictions of the future observations that
maximize the Mutual Information between x and ¢ defined in Equation [5.4]

x|c)
()

However, as |Oord et al. (2018) argue, modeling p(z|c) directly would be

I(z;c) = Zp(a:, c)log p; (5.4)

too computationally intense. Therefore, they propose to maximize the mutual
information between the encoded future latent representations (z;,y) which is
k steps in the future from the current time step t and the present context
vector (¢;) instead. This is described by Equation [5.5]

P(zitk|ce, k)

P(Zt+k) <5'5)

I(zmicr) = Z P(Zesk, ¢ k) log
Zt4kHCt
They show that maximizing I(z;yx; ¢;) is equal to minimizing a loss that
is based on Noise-Contrastive Estimation (Gutmann and Hyvarinen (2010)).
This loss, which is named InfoNCE, is formalized by Equation [5.6|

LVCF — _Ey |log (5.6)

Je(@eqn, ct)
chjeX fk($j7 Ct)

with Ex denotes the expectation averaging the scores over a set X =
{1, x9,...,x5} of N random samples consisting of one positive samples from
p(xik]ce) and N —1 negative samples from p(z.1x). Oord et al.| (2018) use log-
bilinear for modeling the scoring function fi (44, ¢;) (Equation[5.7). Negative
samples can be drawn directly from the input sequence or from other sequences
in the minibatch.
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fr(Tepr, c) = exp (Z;kaCt) (5.7)
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Figure 5.3: Illustration (borrowed from Kawakami et al.| (2020)) of the
CPC framework, which is pre-trained from raw audio data X
which is encoded with two causal convolutional neural net-
works: gene : X — Z and g, : Z — C stacked on top of each
other. The whole model is optimized to solve a next time step
prediction task.

For extracting latent representations for the downstream tasks, either of
z; and ¢; could be used.

5.3.2 wav2vec

One of the most famous variants of the CPC approach is wav2vec (Schneider
et al.| (2019a))), which decomposes Equation for each k = 1,2,..., K as in
Equation [5.8|

Ly =~ i (log o (2 hw(cr)) + AEsnp, [log o (=2 hy(cr))]) (5.8)

where Z denotes encoded representations of negative samples drawn from
a proposal distribution p,. a(z;khk(ct)) denotes the probability of z;,; being
the true sample, and o(x) is the sigmoid function. hg(c;) = Wye; + by is a
step-specific affine transformation different for each step k. [Schneider et al.
(2019a)) optimize the overall loss LY“® by summing over all the step-specific
loss LNYF defined in Equation [5.8] as following:
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K
LNOP =N " Lyer (5.9)
k=1

The expectation E;.,, is approximated by sampling 10 negative examples
by choosing distractors from the same audio sequence based on a uniform
distribution: p, = 7, with T denotes the sequence length (T = |z|).

Schneider et al.| (2019a))’s wav2vec fully relies on convolutional architec-
ture at both encoder and context network. Their models, which are different
in sizes, are pre-trained on different combinations of raw audio training data
(Wall Street Journal (WSJ) (Garofalo et al.| (2007)) and Librispeech (Panay-
otov et al| (2015)))) in order to simulate different scenarios where unlabelled
training data is either scarce or abundant. After the pre-training of these
models, the output ¢; of the context network is used as input for downstream
ASR task instead of surface representations such as log-mel filterbank features.
Their best system manages to outperform the state-of-the-art character-based
ASR system (Amodei et al.| (2016))), improving the WER by 0.67% (from 3.1%
to 2.43%) on the WSJ benchmark. They also show that this approach helps
them reach the best reported result in the literature on TIMIT (Garofolo
et al| (1993)). Furthermore, their experiments show that wav2vec representa-
tions also outperform the baseline using log-mel filterbank features even in the
simulated low-resource scenario when only 8 hours of annotated audio data
is available, and increasing the amount of pre-training unlabelled data also
helps improve the performance further.

5.3.3 vg-wav2vec

Baevski et al.| (2020a)) propose vg-wav2vec which extends wav2vec representa-
tions, learning Vector Quantized (V@) representations of audio data through
solving the same future time-step prediction task. Their motivation consists
of observations indicating that discrete representations are potentially a more
natural fit for many modalities, for instance, language is inherently discrete,
and speech can usually be represented by a sequence of symbols. Furthermore,
discretization of audio makes it easier to exploit a great load of text-based ap-
proaches, which are less data expensive, for speech. Specifically in this work,
BERT representations (Devlin et al.| (2018)) trained on the discretized unla-
belled speech data are shown to be better than log-mel filterbank as well as
wav2vec representations on some benchmarks.

Figure illustrates the vg-wav2vec architecture, which is an extension
of the wav2vec architecture drawn in Figure [5.3] Similar to the wav2vec ar-
chitecture, it contains two convolutional networks including gen. : X — Z
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responsible for encoding a raw audio input sequence x to a latent represen-
tation z, and g, : Z5C aggregating multiple time-steps of the preceding
network to obtain contextualized representations c¢. The network that precedes
the context network g,, is a new quantization module ¢ : Z — Z responsible
for building discrete representations. The quantization module is what makes
vg-wav2vec distinguishes itself from the wav2vec architecture. This module
(depicted as g in Figure turns the dense representations z (outputted from
the encoder network) into discrete indices Z drawn from a fixed-size codebook
e € RV*? containing V representation vectors of size d. Next, instead of z, 2
is fed into the context network g, and a similar context prediction objective
is optimized (Equation .

C |:| |:| |: |: |: ¢t Predictions
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Figure 5.4: Illustration of the vg-wav2vec framework, which consists of
an encoder mapping raw audio X to a dense representation Z
which is then quantized (¢) to Z and aggregated into context
representations C.
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In their original work, Baevski et al.| (2020a) consider two quanization ap-
proaches for choosing the codebook variables differentiablely, including Gumbel-
Softmax approach similar to (Jang et al. (2016])) and online k-means clustering



5.3. Self-supervised Learning Approaches 80

similar to the Vector Quantised Variational AutoEncoder (VQ-VAE) (Oord
et al. (2017)). However, Baevski et al.| (2020a) recognize the collapse mode
issue (i.e. only some of the codewords would actually be used), and propose
to perform multiple vector quantizations over different parts of z (similar to
Product Quantization (Jegou et al. (2010))) for mitigating this problem.

The most interesting point of this approach is that it not only provides
quite a handful of choices for extracting latent features from speech (i.e. one
can either use the output z of the encoder network, the contextualized output
c of the context network (similarly used by Schneider et al. (2019a)), or the
learned discrete units outputted by the quantization module referred to as the
vg-wav2vec features (Baevski et al.| (2020a)))), but also offers the possibilities
for applying other NLP algorithms that require discrete inputs. In Baevski
et al.| (2020a))’s work, a BERT |I| model is trained on the discretized representa-
tions of audio from the same unlabelled training data. This pipeline of speech
representation learning (briefly depicted in Figure helps them obtain a
new state-of-the-art on the TIMIT phoneme classification and WSJ ASR task.

softmax l l l

AN

output

[ Transformer Encoder

discrete tokens

[ Quantizer

Figure 5.5: Illustration of the standard BERT pre-training over learned
vg-wav2vec discrete units Baevski et al.| (2019)

Baevski et al. (2019) reaffirm the advantages of vg-wav2vec coupled with
BERT pre-training for the ASR downstream task. The standard BERT pre-
training over learned vg-wav2vec discrete units (Figure outperforms other
investigated speech features including spectral MFCC or fbank features or fea-

IBERT (Devlin et al.| (2018)) is a pre-training approach for text-based NLP tasks using
a Transformer encoder model to build text representations.
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tures obtained from the proposed BERT-style model learning directly from the
continuous audio data (Baevski et al|(2019)) on the Librispeech benchmark.
Furthermore, this work goes further to fine-tune the BERT model in a su-
pervision manner with labelled ASR data. This is done by stacking a linear
projection layer initialized randomly on top of the pre-trained BERT model
(depicted by “Transformer Encoder”in Figure to solve the ASR task on
different subsets of Librispeech and Libri-light (Kahn et al. (2020)). These
subsets are randomly sampled with different respective sizes of 10 minutes, 1
hour, 10 hours, and 100 hours to better highlight the impact of fine-tuning.
These fine-tuned models are optimized by minimizing the Connectionist Tem-
poral Classification (CTC) loss (Graves et al.| (2006)). Their findings are that
fine-tuning (even with only 10 minutes of labelled data) is enormously bene-
ficial, WER scores drop when the size of the fine-tuning subset increases, and
fine-tuning on 100 hours of labelled data helps beat the best known result on
test-other of Librispeech while relying on much less labelled data.

5.3.4 wav2vec2.0

Contrastive loss
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Figure 5.6: Illustration of the wav2vec2.0 framework, which jointly learns
contextualized speech representations and an inventory of dis-
cretized speech units.
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Wav2vec2.0 proposed by Baevski et al| (2020b)) is yet another extension of
Schneider et al| (20194); Baevski et al| (20204 [2019)). Depicted in Figure 5.6}
similar to the wav2vec framework, it consists of a multi-layer convolutional
feature encoder g, : X — Z, which transforms raw input audio z into latent
speech representations z = {z1, 29, ..., 27} for T time-steps. These latent fea-
tures are then fed into a Transformer g : Z — C for building contextualized
representations ¢ = {cy, co, ..., cr} that capture the infomation of the whole
sequence. This is different from the context network of both the wav2vec and
vg-wav2vec framework, which is modeled by a multi-layer convolutional neural
network usually downsampling their input. Similar to vq-wav2vec, wav2vec2.0
also performs discretization on the output of the feature encoder z; to ¢; by
using a quatization module Z — Q. However, the difference between these
two frameworks is that Baevski et al.| (2020a)) refer to their contextualized
representations as the output of a pipeline of their vqg-wav2vec framework
followed by a BERT-like pre-training on discrete speech units. By contrast,
wav2vec2.0’s Transformer network learns contextualized representations di-
rectly from continuous speech representations (z) via time-step masking and
constrative task which identifies the true quantized latent audio representation
in a set of distractors for each masked time step. This consequently allows
Baevski et al.| (2020b) to train wav2vec2.0 in an end-to-end fashion, in which
all the components of the presented architecture are trained jointly toward
minimizing an objective (Equation [5.11] [5.12] [5.13)), rather than cascading
the training procedure as in |Baevski et al. (2020al).

L=L,+al, (5.11)
exp(sim(cy, qi)/K)
L, =-1o - - 5.12
S, Sp(sim{c, DJ) (512
e | GV
Ed = W;_H(pg) = W;;pg,v 10gpg,v (513)

In Equation [5.11] the training objective is defined as the sum of two com-
ponents:

e Contrastive Loss £,,: is defined in Equation [5.12 Particularly, given ¢,
centered over the masked time step ¢, the model is trained to contrast
the true quantized latent speech representation ¢; from K quantized
latent distractors ¢ € @, uniformly sampled from other masked time
steps of the same utterance. sim(a,b) = a'b/||al|||b|| measures the
cosine similarity between context representations ¢; and quantized latent
speech representations g;.
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e Diversity Loss £;: which is defined in Equation helps increase the
use of the quantized codebook representations, encouraging the model
to equally use all the V' entries in each of G codebooks by maximizing
the entropy of the averaged softmax distribution over the codebook en-
tries for each codebook p, across a batch of utterances (Dieleman et al.
(2018))). In Equation [5.11] £4 is scaled by «, which is a tunable hyper-

parameter.

Masking: time-step masking mentioned earlier is done by randomly sam-
pling without replacement a certain proportion p of all time steps to be starting
indices and then mask the subsequent M consecutive time steps from every
sampled index. Note that spans may overlap, and inputs to the quantization
module are not masked (the right side of Figure .

Fine-tuning: similar to [Baevski et al.| (2020a)’s vg-wav2vec, wav2vec2.0
framework also allows fine-tuning the pre-trained model directly on ASR la-
belled data by stacking a linear projection layer initialized randomly on top of
the context network. Fine-tuned models are optimized by minimizing a CTC
loss. They show that fine-tuning even on only 10 minutes of labeled training
data (48 recordings of 12.5 seconds on average) helps achieve respective WER
of 4.8 and 8.2 on test-clean, and test-other of Librispeech.

5.3.5 Other approaches

Beside CPC, other SSL approaches for learning useful speech representations
have been proposed, some of which are presented as follows:

Autoregressive Predictive Coding (A PC): inspired by language model-
ing, Chung et al. (2019); Chung and Glass (2020b) propose to use APC for
inferring a future frame x;,,, (of a full utterance z = (1, x9, ..., xy) of length
N) that is n steps ahead of ;. This is done by using an autoregression RNN to
process each frame x; sequentially to make prediction about 1, which has the
same dimension as x;, for t = 1,2, ..., N —n. The model is trained to minimize
the frame-wise L1 loss between the predicted sequence y = (y1, Y2, ..., YN—n)
and the target sequence (Z14n, To4n, ..., £n) (Equation [5.14). Once this model
is trained, the output of the last RNN layer (hq, ho,...,hy) is taken as the
extracted features for the input sequence x = (z1, 2, ..., Ty).

N—n
Ly(z) = Z |Ttgn — Uil (5.14)

t=1
Masked Prediction of Hidden Units: Hsu et al.| (2021) propose HuBERT
(dubbed for Hidden Unit BERT), which exploits a BERT model to predict
pre-determined cluster assignments from masked continuous speech features.
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In detail, firstly, discrete speech units are pre-computed by an offline k—means
model (Lloyd| (1982)). Secondly, from the masked input sequence, a BERT
model is exploited to produce a feature sequence, which is then used (along
with the pre-determined discrete sequence computed from the input sequence)
to compute a cross-entropy loss. Their large model trained with iteratively
refining k-means cluster assignments using learned latent representations con-
sistently outperforms wav2vec2.0 of the comparable model size on the Lib-
rispeech and Libri-light (Kahn et al. (2020)) with 10min, 1k, 10h, 100h, and
960h fine-tuning subsets. Moreover, they show that they can further improve
the performance by scaling the model size up to the extra-large model of 1
billion parameters.

5.4 Conclusion

We review in this chapter two most commonly used conventional speech repre-
sentation approaches, including Log Mel Filterbank and Mel-Frequency Cep-
strum Coefficients. These methods selectively use mathematical tools to di-
rectly transform the digitized speech signals into a denser representation. Our
focus in this chapter, however, is on Self-supervised Learning from Speech rep-
resentations, which is a more recent approach for extracting speech features.
More specifically, we present Contrastive Predictive Coding (CPC) which aims
at learning useful representations from high-dimensional un-annotated data by
predicting the future in latent space. This approach allows to leverage huge
amounts of un-annotated data for learning useful representations from speech.
These representations are then used in downstream tasks, for example, Au-
tomatic Speech Translation, which usually suffers from data craving. The
different variants of CPC are presented in this chapter, namely, wav2vec, and
two of its extensions including vg-wav2vec, which learns vector quantized rep-
resentations and wav2vec2.0, which masks raw input speech in the latent space
and solves a contrastive task defined over quantized speech representations.
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CHAPTER 6

Offline Neural Speech Translation

6.1 Introduction

In Chapter [2, we discuss in detail end-to-end neural approaches for automatic
speech translation. These approaches are distinguished from the conventional
cascaded speech-to-text translation, which operates in two steps: (1) source
language speech recognition (ASR) and (2) source-to-target text translation
(MT). By contrast, end-to-end approaches attempt to build direct translation
systems without using source language transcription during learning or de-
coding (Bérard et al. (2016); Weiss et al. (2017))) or using it at training time
only (Bérard et al| (2018)). Since these proof-of-concept works, end-to-end
AST has been attaining great development velocity. As the result, an opulent
resource of offline end-to-end speech translation neural architectures, develop-
ment toolkit, frameworks and different speech corpora have been introduced.
Therefore, investigations amongst these are of great importance for this the-
sis, which focuses on end-to-end AST. The investigations were carried out at
the beginning of this thesis, building a foundation for other contributions that
follow. This chapter is dedicated to telling the story about this quest, which
results in several offline end-to-end AST systems in two different language
pairs English-Portuguese (En—Pt), and English-German (En—De) described
in two system description papers accepted for presentation at the IWSLT 2019
(Nguyen et al| (2019)) and IWSLT 2020 (Elbayad et al.| (2020b)) workshop
respectively:

e M. Elbayad, H. Nguyen, F. Bougares, N. Tomashenko, A. Caubriere, B.
Lecouteux, Y. Esteve, and L. Besacier, “ON-TRAC Consortium for
End-to-End and Simultaneous Speech Translation Challenge
Tasks at IWSLT 2020”, in The International Conference on Spoken
Language Translation ACL - 17th IWSLT, Seattle, WA, United States,
Jul. 2020.

e Nguyen, H., Tomashenko, N., Boito, M. Z., Caubriere, A., Bougares, F.,
Rouvier, M., Besacier, L., and Esteve, Y. “ON-TRAC consortium
end-to-end speech translation systems for the IWSLT 2019
shared task”, International Workshop on Spoken Language Translation
(IWSLT 2019).
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This chapter is organized as to emphasize our contributions in the context
of these two evaluation campaigns, firstly talking about our work for IWSLT
2019, and then describing the details of our work for IWSLT 2020.

6.2 Translation systems for the IWSLT 2019

Until 2019, The International Workshop on Spoken Language Translation
(IWSLT) is an annual scientific workshop, associated with an open evalua-
tion campaign on spoken language translation. In the workshop, both scien-
tific papers and system descriptions are presented. IWSLT 201@ is the 16th
workshop, taking place in Hong Kong. The scope of this campaign is limited
to speech-to-text translation systems of either cascaded or end-to-end fash-
ion. Submissions to this campaign are required to translate (automatically)
English audio data extracted from TED talks into German or Portuguese.
End-to-end models are defined by the organizers of the campaign to possess
the following properties (Jan et al. (2019)): (1) “Do not exploit intermediate
discrete representations (e.g., source language transcription or hypotheses fu-
sion in the target language)”, and (2) “Rely on parameters that are all jointly
trained on the end-to-end task”.

Participating in this evaluation campaign, we develop several translation
systems for the end-to-end model task for the En— Pt language pair. These
systems consist of both cascaded and end-to-end models based on different
granularities (BPE or characters). Our end-to-end models, described in de-
tail in the coming sections, are based on encoder-decoder architecture with
attention mechanism. The ultimate goal of this participation is to answer the
following scientific questions:

e Question 1: Does pooling heterogeneous corpora (How2 and MuST-C)
help the AST training?

e Question 2: What is the better tokenization unit on the target side (BPE
or characters)?

e Question 3: Considering that segmentation is an important challenge of
AST, what is the optimal way to segment the speech input?

e Question 4: Does fine-tuning increase the system’s performance?

e Question 5: Is our end-to-end AST model better than an ASR+MT
pipeline?

'https://workshop2019.iwslt.org/
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6.2.1 Data

Choosing to develop translation systems which translate English speech into
Portuguese text, we only concern ourselves with the speech corpora of this
language pair. In particular, How2 (Sanabria et al. (2018))) and MuST-C
(D1 Gangi et al.| (2019a))) corpora are used in our work. Since we focus on
En—Pt AST tasks, only the En—Pt portion of MuST-C corpus is taken. The
statistics of these two corpora, along with the corresponding provided evalu-
ation data, can be found in Table [6.1] In order to answer the first scientific
question mentioned earlier, we pool these two corpora together to create a
merged corpus whose details can also be found in the same table.

Corpus #Segments | Hours | #src words | #tgt words
MuST-C 206,155 376.8 3.9M 3. T
How?2 184,624 297.6 3.3M 3.1M
Merged corpus 390,779 674.4 7.2M 6.8M
MuST-C eval 2,571 5.4 - -
How?2 eval 2,497 4.5 - -

Table 6.1: Statistics of the original MuST-C and How?2 corpora, the
merged version, and the official evaluation data (audio data
only).

We note that the statistics for the How2 training set might slightly differ
from that of the original paper (Sanabria et al. (2018)) because the original
audio files of the How2 corpus were not made officially available for some
technical reasons. The full corpus was only provided as pre-extracted acoustic
features (40-dimensional filter bank features). Aiming to apply our own fea-
ture extraction instead, we needed to download the original video files from
Youtube P and then extracted the audio from these downloaded video files.
However, this raised one issue related to the availability of audio files on
Youtube at the downloading date. In detail, on July 12th, when our version
of the corpus was downloaded, 21 (out of 13,472) video files were missing.
We consider this as a minor loss with regard to the possibility it gives us to
extract our own acoustic features.

2https://www.youtube.com/
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6.2.2 Speech segmentation

As stated in Chapter [2], end-to-end AST systems are usually trained on paral-
lel corpora of source utterances paired with corresponding translation text. It
is, therefore, important for the evaluation data to be segmented in the same
manner in order to avoid mismatches between training and inference. In our
case, whereas the organizers of the campaign provide a predefined segmen-
tation for How2 evaluation data, this is not the case for the evaluation data
related to TED talks. For this reason, two different approaches to segment
the MuST-C (TED talks) audio stream are investigated:

e Speaker Diarization-based approach: uses LIUM_SpkDiarization toolkit
(Meignier and Merlin (2010)), which is a well-known open-source toolkit
for speaker diarization, to segment the input utterance. The default con-
figuration is used for our purpose.

e ASR-based approach: uses an ASR system as a speech segmenter (Fig-
ure . In order to do this, firstly, all the validation and evaluation
datasets are transcribed automatically and without segmentation with a
Kaldi-based ASR system (Daniel et al.| (2011)) trained on TEDLIUM 3
(Hernandez et al| (2018)) | After being trained, this ASR system pro-
duces recognized words with timing information including start time and
duration for each word, from which silence duration between two words
(when silence or non-speech events occur) can be measured. In the final
step, we set some thresholds based on which audio files can be split. In
detail, for segments that have less than 40 words, if a silence between
two words is higher than a threshold of 0.65 seconds, we split the audio
file. In case the segment contains more than 40 words, this threshold is
reduced to 0.15 seconds, in order to avoid exceedingly long segments. We
particularly use these thresholds for the segment duration distribution
in the evaluation data close to the one observed in the training data.

Table summarizes statistics about segment duration on training data
whose segmentation is provided by the organizers, and evaluation data, which
is segmented by the presented approaches.

3In the context of the campaign, the use of some TEDLIUM 3 files is forbidden. These
files have been removed before training the ASR system. We did not try to optimize the
ASR system on our training data.
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Corpus/Segmentation Min size | Max size | Average | std dev
Train/Organizers 0.17 30.00 6.31 4.72
Eval/ASR-based 0.03 22.71 6.09 4.52
Eval/Speaker Diarization-based 1.51 20.00 9.62 5.33

Table 6.2: Statistics on speech segments duration (MuST-C) for 2 differ-
ent segmentation approaches. All values are given in seconds.

TEDLIUM-3

training data

<l e -

Unsegmented speech

Transcription = ‘””WM“WN "
+ Timing information

Segmented speech

+ transcription

Figure 6.1: Illustration of ASR-~based segmentation approach.

We choose the segmentation approach for our primary system amongst
these two approaches based on the experiments on the MuST-C tst-COMMON
test set. For these experiments, a preliminary version of our end-to-end sys-
tem trained on the MuST-C training data is used to translate speech into
lower-case text. After this, the mwerSegmenter tool []is used to realign our
translations to the reference segmentation of the MuST-C tst-COMMON data,
and the results are passed to the next step which measures the translation
quality based on BLEU score. Table |6.3| compares the BLEU scores obtained
with manual (original MuST-C annotations) with the presented segmentation
strategies: ASR-based, and Speaker Diarization-based. It is clear from the
table that the Speaker Diarization-based segmentation leads to inferior trans-
lation quality in comparison with its ASR-based counterpart. It is also notable
that manual segmentation still outperforms our best automatic segmentation
(25.50 against 22.03 BLEU), showing that automatic segmentation of the au-
dio stream is an important issue for the speech translation task. This answer
question 3 imposing in Section [6.2]

‘https://www-i6.informatik.rwth-aachen.de/web/Software/mverSegmenter.
tar.gz
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Segmentation BLEU

Manual (original) 25.50

Speaker Diarization (Meignier and Merlin7(2010)) 21.01
ASR-based - 22.03

Table 6.3: BLEU scores (lower-case evaluation) obtained on the tst-
COMMON (MuST-C corpus) data with different speech seg-

mentation strategies.

Based on these findings, the ASR-based segmentation approach is chosen
for our primary system applied to the TED talks (MuST-C) evaluation data,
whose segmentation information is not available. For the How2 evaluation
data, we use the manual segmentation provided by the organizers.

6.2.3 Experimental setups

Participating in this workshop, this thesis contributed in exploring several
deep learning frameworks for speech processing, including OpenNMT (Klein
et al.| (2017))) and ESPnet (Watanabe et al.[(2018)). ESPnet was chosen for its
flexibility, speech friendly, and superior results on several initial experiments.
Based on ESPnet, we develop several speech translation systems including
both a pipeline system that served as our baseline and end-to-end systems
trained on different settings for the En—Pt language pair.

6.2.3.1 End-to-end speech translation

In this section, we detail the setups for training all our end-to-end models
that have similar architectures and differ mainly in the following aspects: (1)
training corpus, (2) type of tokenization units, and (3) fine-tuning and pre-
training strategies.

Speech features: we apply the same 80-dimensional Mel filter-bank acous-
tic features concatenated with 3-dimensional pitch features | for training all
our models. These features are extracted from 25ms windows with a frame
shift of 10ms, and normalized by cepstral mean and variance normalization
computed on the training set. In terms of data augmentation, we use speed
perturbation with factors of 0.9, 1.0, and 1.1 on training data (Ko et al.
(2015)).

SPitch-features are computed using the Kaldi toolkit (Daniel et al. (2011)) and consist of
the following values (Ghahremani et al.| (2014))): (1) probability of voicing (POV-feature),
(2) pitch-feature and (3) delta-pitch feature. For details, see http://kaldi-asr.org/doc/
process-kaldi-pitch-feats_8cc.html
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Text preprocessing: we normalize punctuation, and tokenize all the Por-
tuguese text using Moses normalization scripts E] The target text is case-
sensitive and contains punctuation. Furthermore, we observe that the text of
the MuST-C corpus contains non-speech events, for example, “Laughter”, “Ap-
plause” marks. We keep these when training the model on MuST-C data only,
but remove them from the text when training the models on the combination
of both corpora to ensure consistency.

Development sets: are generated by randomly sampling 2, 000, 2, 000, and
4,000 sentences from MuST-C, How2 and the merged corpus respectively.
These sentences are removed from the corresponding training sets.

Data filtering: in order to make the training feasible with our limited
computational resources, long sentences that exceed 3,000 frames (= 30s)
or 400 characters are removed from the training and the development set.
Consequently, we suffer a minor loss of 6%, 8% and 7% of speech data for
How2, MuST-C and the merged corpus respectively.

The summarization of the training data after preprocessing can be found

in Table

Set #Segments | #src words | #tgt words
MuST-C train 597,871 10.9M 10.3M
MuST-C dev 1,994 36.4K 34.4K

How2 train 538,231 9.4M 8.9M
How2 dev 1,984 33.7K 32.0K
Merged train 1,136,084 20.9M 19.2M
Merged dev 3,978 72.4K 66.5K

Table 6.4: Statistics for the training data after preprocessing.

Architecture: our end-to-end AST models are based on an attention-based
encoder-decoder architecture (Figure [6.2]), whose encoder has two VGG-like
(Simonyan and Zisserman| (2014))) CNN blocks. Each VGG block contains
two 2D-convolution layers followed by a 2D-maxpooling layer whose aim is to
reduce both time (7") and frequency dimension (D) of the input speech features
by a factor of 2. These two VGG blocks transform the input speech features’
shape from (7" x D) to (T'/4 x D/4) with T' is the duration of input speech
represented by the number of speech frames, and D is the dimension of speech
features. After these VGG-like blocks, we stack five 1024-dimensional BLSTM
layers. The decoder has two 1024-dimensional LSTM layers. |Bahdanau et al.

Chttp://www.statmt.org/moses/
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(2015))’s attention mechanism is used in all our experiments to bridge the
encoder and the decoder.

2 BLSTM

1 BLSTM

MaxPool

VGG BLOCK CNN

CNN

VGG BLOCK

T

Figure 6.2: Architecture of the speech encoder used in [Neuyen et al)
(2019): a stack of two VGG-like CNN blocks followed
by five BLSTM layers. Each VGG block contains two
2D —convolution layers followed by a 2D—maxpooling layer
whose aim is to reduce both time (7") and frequency dimen-
sion (D) of the input speech features by a factor of 2. These
two VGG blocks transform input speech features’ shape from
(T'x D) to (T'/4 x D/4).

Hyperparameters’ details. In all our experiments, dropout is set only
on the encoder part with the probability of 0.3. Adadelta is chosen as our
optimizer.

6.2.3.2 Cascade baseline

Beside the development of end-to-end AST models, in this work, we also
develop a pipeline system of an ASR model coupled with an MT model, that
serves as our baseline system. This pipeline approach is described in detail in
this section.

ASR system: is built by the Kaldi speech recognition tookit. Our ASR
system is similar to the one built from the tedlium/s5_r3 recipe |Z| We train
our acoustic model on TEDLIUM-3 (Hernandez et al.| (2018))) and a subset
of the MuST-C corpus. We use TDNN-F (11 TDNN-F layers) structures for
acoustic modeling with 40-dimensional MFCC features. As for the language

"https://github.com/kaldi-asr/kaldi/tree/master/egs/tedlium/s5_r3/
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model (LM), a simple 3-gram LM is trained using TEDLIUM-3, MuST-C and
How2 corpus, with SRILM toolkit (Stolcke (2002)). With this ASR system,
we achieve a case-insensitive WER of 21.71% and 26.89% on MuST-C tst-
COMMON and How2 val set respectively.

MT system: is built based on Transformer model as implemented in
fairseq (Ott et al.| (2019)), which is the state-of-the-art model for MT. Our
models are based on the small Transformer settings which have, at both the
encoder and the decoder side, 6 Transformer layers with an embedding layer of
size 512, a feed-forward layer with an inner dimension of 1024, and 4 heads for
the multi-head attention layers. This NMT system is trained on the merged
corpora (Table with a vocabulary of 30K units based on a joint source
and target BPE.

Results of the pipeline speech translation system are reported in the last
line of Table [6.5

Evaluation set ASR Ref
How?2 val 34.23 | 51.37
MuST-C tst-COMMON | 22.14 | 28.34

Table 6.5: Detokenized Case-sensitive BLEU scores for different evalua-
tion sets when translating the automatic (ASR) and human
(Ref) transcription.

6.2.4 Experiments and results

In this section, we describe our experiments and the corresponding results,
which help answer the scientific questions mentioned earlier in this chapter.

6.2.4.1 Question 1: choosing the training corpus

We train three character-based end-to-end models with the architecture de-
scribed in the previous section using three different training corpora: (1)
MuST-C, (2) How2, and (3) the merged version of the two corpora. These
models are then evaluated on the MuST-C tst-COMMON, and the How2 val
set. The results are reported in the first three lines of Table from which
we can observe that the model trained on the merged corpora outperforms
the ones trained on MuST-C (difference of 3.32 BLEU) and How?2 (difference
of 3.11 BLEU). This model (line #3 of the table) is, therefore, used for our
IWSLT primary system submission for both evaluation datasets.
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No. Experiment Token | MuST-C tst-COMMON | How2 val
1 Must-C char 23.59 -

2 How?2 char - 39.86
3* Merged char 26.91 42.97
4 Merged BPE-400 24.73 43.82
5) Merged BPE-2k 23.11 41.45
6 Merged BPE-5k 22.25 41.20
7 Merged BPE-8k 21.75 40.07
8 FT / Unfreeze char - 43.02
9 FT / Freeze char - 43.04
10 | Pipeline (Table[6.5) | BPE-30k 22.14 34.23

Table 6.6: Detokenized case-sensitive BLEU scores for different experi-
ments. Two lines with F'T" correspond to the models trained
on the merged training corpus and fine-tuned (FT) using only
the How?2 corpus.

6.2.4.2 Question 2: choosing the tokenization units

This series of experiments are designed in order to investigate the impacts
of the tokenization units on the performance of the translation system. Two
types of tokenization units are investigated, including characters and subword
units based on BPE. For this purpose, we train four additional BPE-based
models with different vocabulary sizes of 400, 2000, 5000 and 8000. The results
for the these models are given in Table [6.6] lines #4-7. It is notable from the
table that having fewer output tokens on the decoder side is beneficial. For
this reason, we conclude that, in our settings, characters seem to be the best
tokenization units on the MuST-C, and BPE-400 units provide the best results
for the How?2 task [l

6.2.4.3 Question 3: segmentation

We have seen in the earlier section that our ASR-based segmentation leads
to better BLEU scores than the off-the-shelf Speaker Diarization-based seg-
mentation approach. For this reason, we use the ASR-based segmentation
approach for processing TED talks for our primary system, while we use the
Speaker Diarization-based approach for a contrastive system.

8However, since the BPE-400 result for How2 was obtained after the evaluation deadline,
our official submission uses characters for both MuST-C and How2 datasets.
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6.2.4.4 Question 4: fine-tuning impact

In this work, we also investigate fine-tuning scenarios where we extend the
training of the model which uses the merged corpora (line #3 in Table
for one more epoch on the How2 corpus only (our evaluation target). The
fine-tuning scenarios can be either: (1) fine-tuning both the encoder and the
decoder (denoted as Unfreeze on line #8 of Table and (2) fine-tuning the
decoder only (denoted as Freeze on line #9 of the same table). It can be seen
from line #8 and #9 of Table [6.6| that there is a slight but not significant gain
with fine-tuning and no difference between Freeze and Unfreeze options.

6.2.4.5 Question 5: pipeline or end-to-end

The results of the pipeline model for both corpora are available in the last line
(#10) of Table[6.6] It is clear from the table that our best end-to-end speech
translation results (lines #3 and #4) outperform this baseline model by a
difference of 4.77 points for TED talks and 9.59 points for How2. However, it
is important to mention two following points: (1) we do not fully optimize the
ASR, NMT system and their combination, and (2) these results still highlight
the performance of our end-to-end speech translation systems.

6.2.4.6 System submission and official results

As mentioned earlier, we use the ASR-based segmentation approach for au-
tomatically segmenting the campaign’s official testset tst2019, and after that,
we use model 3% of Table in order to automatically generate hypothesis
translation for our primary submission. The official results of this submission
are shown in Table [6.7]

Testset | BLEU | TER | BEER | characTER | BLEU(CI) | TER(CI)

TED En—Pt | 24.57 | 67.92 | 49.16 52.33 25.87 65.41

How2 En—Pt | 44.08 | 39.94 | 64.22 31.27 44.55 39.31

Table 6.7: IWSLT 2019’s official results of our primary submission (Jan
et al.| (2019)).

We highlight that our result on the TED En—Pt testset (line 1 of Ta-
ble ranks first in this campaign, outperforming the ranked-second system
by a large margin (24.57 versus 9.95). Our result on How2 En—Pt testset
(line 2 of Table ranks second, standing behind a cascaded system which
scores 47.86 on the same testset. The detailed ranking can be found in [Jan
et al.| (2019).
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6.3 Translation systems for the IWSLT 2020

In 2020, the 17th TWSLT [|becomes a part of the ACL2020 conference %] The
major change of this workshop, however, is the expansion in terms of chal-
lenge tracks, with the introduction of four new tracks including Simultaneous
Speech Translation, Video Speech Translation, Open Domain Translation and
Non-native Speech Translation, in addition to the Offline Speech Translation
and the Conwversational Speech Translation track which existed in the previ-
ous edition (Ansari et al.| (2020)). We participate in this workshop in two
different evaluation tracks: end-to-end consecutive (offline) speech transla-
tion, and simultaneous (online) speech translation (Elbayad et al. (2020b)).
This chapter concentrates mainly on the distributions in the offline speech
translation track, in which participants are required to translate (automati-
cally) English audio data extracted from TED talks into German text. In this
campaign, we only focus on developing end-to-end AST models, although cas-
caded systems are allowed by the organizers. We develop end-to-end models
based on encoder-decoder with an attention mechanism, trying to investigate
the impacts of data augmentation and ensembling of multiple models on the
translation quality.

Name #segments | Total length (in hours)

MuST-C train 229.703 400
MuST-C dev 1.423 2.5
MuST-C tst-COMMON 2.641 4.1
MuST-C tst-HE 600 1.2
Europarl train 32.628 7
Europarl dev 1.320 3.1

How?2 synthetic 176.564 285.5
tst2019 2.813 5.1

tst2020 2.263 4.1

Table 6.8: Statistics of training and evaluation data. The statistics of
tst2019 and tst2020 are measured on the segmented version
provided by IWSLT2020 organizers.

9nttp://iwslt.org/doku.php
Ohttps://ac12020.0rg/
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6.3.1 Data

For all the experiments presented in this section, we rely on MuST-C En—Ge
(hereafter called MuST-C original to distinguish between the synthetic ver-
sion presented shortly after) and Europarl-ST (Iranzo-Sénchez et al.| (2020)))
En—Ge as our main corpora. Besides, we automatically translate (into Ger-
man) the English transcription of MuST-C and How2 in order to augment
the training data. This results in two synthetic corpora, which are called
MuST-C synthetic and How2 synthetic respectively. The statistics of these
corpora, along with the provided evaluation data, can be found in Table [6.8]
We experiment with different ways of combining those corpora. The details
of these experiments are presented later in this section.

6.3.2 Experimental setups

Speech segmentation: the same as our presented works for IWSLT 2019 (Sec-
tion , we reuse the ASR-based segmentation approach for acquiring the
segmentation information of the evaluation and development data, along with
the segmentation provided by the IWSLT organizers. These two segmenta-
tion types are dubbed as “ASR seg” and “IWSLT seg” in Table and
respectively.

Speech features and data augmentation: we follow exactly the same pro-
cedure as presented in Section in order to extract the acoustic features
for our models (mean and variance normalized 80-dimensional Mel filter-bank
features, concatenated with 3-dimensional pitch features). In terms of data
augmentation, beside concatenating different corpora presented earlier, we use
speed perturbation with factors of 0.9, 1.0, and 1.1. We also apply SpecAug-
ment (Park et al.| (2019))) to the training data. All three SpecAugment meth-
ods are used, including time warping (W = 5), frequency masking (F' = 30),
and time masking (7" = 40).

Text preprocessing: the same as in Nguyen et al| (2019), we normalize
punctuation marks, and tokenize all the German text using Moses. Target
text is case-sensitive and contains punctuation marks. Furthermore, the non-
speech events (i.e “Laughter”, “Applause”, etc.) are also removed from the
target text. This results in a vocabulary of 201 characters. We later find that
some of these characters should not appear in the German text, for example,
), IR, &, £, etc. Therefore, they are manually excluded from the vocabulary.
Finally, we obtain an output vocabulary of 182 characters.

Architecture: we reuse our attention-based encoder-decoder architecture
presented in Section We would like to mention that Transformer-based
models have also been tested and showed weaker results compared to the
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LSTM-based encoder-decoder architecture. For this reason, we keep using
the aforementioned LSTM-based architecture for our experiments.

Hyperparameters’ details: all of our models are trained in maximum 20
epochs, with early stopping being set so that the training would stop after 3
epochs if it shows no improvement in terms of accuracy on the development
set. Dropout is set to 0.3 on the encoder part, and Adadelta is chosen as
our optimizer. Parameters for inference are carefully tuned for our settings.
In particular, we use a beam size of 10, and we prevent the models from
generating too long sentences by setting a maxlenratid™|= 1.0.

In summary, all our end-to-end models have similar architecture, and differ
mainly in the following aspects: (1) training corpora, (2) type of tokenization
units and (3) fine-tuning and pre-training strategies.

6.3.3 Experiments and results

We discussed in Section the benefit of combining different corpora for
augmenting our training data. For this reason, in this evaluation campaign,
we continue exploring different combinations of different corpora as well as the
use of synthetic data. Our baseline model is trained on the combination of
[MuST-C original + Europarl-ST], whose target translation is original. The
first two rows of Table show that combining How2 synthetic with the
baseline data set [MuST-C original + Europarl-ST] does not yield significant
improvement. It can be clearly seen that this data pool is even worse than
the baseline on both tst2015 (IWSLT seg) and tst2015 (ASR seg). However,
line #3 shows that applying SpecAugment on this same combination helps
outperform the baseline on every investigated test set, with substantial gain
in terms of BLEU scores can be found on both MuST-C tst-COMMON and
MuST-C tst-HE. For this reason, we consistently apply SpecAugment to all the
remaining experiments. Surprisingly, we find that adding MuST-C synthetic
to this data combination leads to the shrinkage of BLEU scores on both the
MuST-C test sets, yet at the same time substantially increases the scores on
both tst2015 (IWSLT seg) and tst2015 (ASR seg). However, due to the time
constraint of the evaluation campaign, we are not able to investigate further
on this matter. Therefore, instead of choosing model 4* for fine-tuning, we
choose model 3*, which, as we can see, yields fairly good performance amongst
all the test sets. This model is fine-tuned on MuST-C original and MuST-
C original4synthetic. Table shows that the impact of fine-tuning is very
limited. Furthermore, it can be noticeable that adding MuST-C synthetic does
not make much difference. Finally, the results of ensembling all six models at

1 . mazximum_output_length
maxlenratio =

encoder_hidden_state_length
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decoding time are indicated on the last row of the table. We can see clearly
that ensembling yields the best BLEU scores across all the test sets.

No Experiment MuST-C MuST-C tst2015 tst2015
‘ P tst-COMMON | tst-HE | (iwslt seg) | (ASR seg)
p | MuST-C original 20.18 19.82 12.59 14.85
+ EuroParl
MuST-C original
2 + Europarl 20.51 20.10 12.10 13.66
+ How2 synthetic
MuST-C original
3* + Europarl 23.55 22.35 13.00 15.30
+ How2 synthetic
MuST-C original
yx | T Buropal 22.75 21.31 14.00 16.45
+ How?2 synthetic ’ ’ ’ '
+ MuST-C synthetic
Finetune 3*
*
5 on MuST-C original 23.60 22.26 13.71 15.30
Finetune 3*
6* | on MuST-C original 23.64 22.23 13.67 15.29
+ MuST-C synthetic
7 Ensemble (1 to 6) 25.22 23.80 15.20 16.53

Table 6.9: Detokenized case-sensitive BLEU scores for different experi-
ments - * represents experiments that apply SpecAugment.

In summary, Table reaffirms two important points: (1) ensembling
all six models is the most promising among all presented models, (2) our
own ASR-based segmentation approach is better than the provided one. For
these reasons, we choose as our primary submission the translations of the
ASR-based segmentation generated by the ensemble of all six models. Model
3* and 4* (Table are also used to translate our contrastive submission
runs, whose ranks are shown in Table [6.10] The official results for all our
submitted systems can be found in Table[6.11] They confirm that our proposed
segmentation approach is beneficial.
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Model IWSLT seg ASR seg
3* constrastived | constrastive3
4* constrastived | constrastive2
Ensemble | constrastivel primary

Table 6.10: The ranking of out submitted systems. Model 3* and 4* are
respectively corresponding to No.3* and No.4* of Table 6.9}

No. Set BLEU | TER | BEER | CharacTER | BLEU(ci) | TER(ci)
1 | 2019.contrastivel | 17.57 | 71.68 | 47.24 58.03 18.64 69.66
2 | 2019.contrastive2 | 17.83 | 71.60 | 48.66 53.49 18.9 69.26
3 | 2019.contrastive3 | 19.03 | 66.96 | 49.12 54.10 19.97 65.01
4 | 2019.contrastived | 15.08 | 78.79 | 45.87 59.06 16.06 76.62
5 | 2019.contrastived | 15.87 | 74.17 | 46.18 59.96 16.86 72.15
6 2019.primary 20.19 | 66.38 | 49.89 52.51 21.23 64.26
7 | 2020.contrastivel | 18.47 | 71.85 | 48.92 55.83 19.46 69.88
8 | 2020.contrastive2 | 19.31 | 69.30 | 49.55 52.68 20.36 67.14
9 | 2020.contrastive3 | 20.51 | 64.88 | 50.19 53.06 21.5 62.99
10 | 2020.contrastived | 15.48 | 83.45 | 46.68 57.56 16.42 81.33
11 | 2020.contrastiveb | 16.5 | 75.15 | 47.23 57.90 17.42 73.22
12 2020.primary 22.12 | 63.87 | 51.20 51.46 23.25 61.85

Table 6.11: IWSLT 2020 official results (offline track) on tst2019 and
tst2020.

We note that our primary results on both the test sets fall behind the
ranked-first system by 3.18 (on tst2019) and 3.77 (on tst2020) BLEU, which
is trained on much more data with more complicated dual training Potapczyk
and Przybysz| (2020). The detailed ranking of the campaign can be found
in |Ansari et al. (2020)).

6.4 Conclusion

In this chapter, we have presented our quest for finding end-to-end AST mod-
els that are most suitable for our condition. A series of experiments, which
were carried out for our participation in two speech translation evaluation

campaigns namely IWSLT 2019 and TWSLT 2020, agree that LSTM-based
encoder-decoder with attention architecture performs well in our settings. We
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also observe through experiments that combining speech translation corpora
significantly helps improve the performance of the translation system. Ex-
periments on both language pairs En—De and En—Pt show that the results
are in favor of using characters as output tokens. Furthermore, ensembling is
considerably beneficial, while fine-tuning shows limited or no improvement on
the performance of the system.

From the presented results, character-based encoder-decoder with atten-
tion models will be consistently reused in our following experiments, which
shall be presented in the remaining of this thesis. However, the readers of
this thesis should be warned that, since this research field is proliferating with
great velocity, this finding might not agree with more recent ones from other
research groups.



CHAPTER 7
Self-supervised Learning Speech
Representation

7.1 Introduction

In Chapter 2| we accentuated that parallel corpora, which is essentially re-
quired for training end-to-end AST models, are not as abundantly available
as data for training end-to-end MT or ASR models. In the same chapter, sev-
eral techniques that help mitigate this issue had been discussed including data
augmentation, multi-task training and pre-training, which either endeavor to
enlarge the scanty amount of AST data available on hand by different data ma-
nipulation approaches, or attempt to leverage training data from other tasks
which can be more easily found. Chapter |5| discussed the advantages of Self-
supervised Learning (SSL) from speech, which allows to leverage a substantial
amount of unlabelled speech data for learning useful speech representations.
Gathered evidence of the effectiveness of these kinds of representations when
applied to other speech tasks (Chung et al. (2019); Chung and Glass| (2020Db));
Oord et al.| (2018); Baevski et al. (2019); |Schneider et al.| (2019a)); Baevski
et al.| (2020b)) suggests that SSL might be a promising solution for the afore-
mentioned data availability challenge imposed on end-to-end AST. One of
the major contributions of this thesis is an in-depth study about the impact
of self-supervised pre-training for end-to-end AST, which, to the best of our
knowledge, is amongst the first attempts to utilize SSL speech representations
for end-to-end AST. This work is presented at the Interspeech 2020 conference
(Nguyen et al| (2020a)) and the SAS 2020 workshop [T}

e Ha Nguyen, Fethi Bougares, Natalia Tomashenko, Yannick Esteve, Lau-
rent Besacier, “Investigating Self-supervised Pre-training for
End-to-end Speech Translation” Interspeech 2020, Oct 2020, Shangai
(Virtual Conf), China.

e Ha Nguyen, Fethi Bougares, Natalia Tomashenko, Yannick Esteve, Lau-
rent Besacier, “Investigating Self-supervised Pre-training for

ICML 2020 workshop on Self-supervision in Audio and Speech (SAS): https://
icml-sas.gitlab.io/.
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End-to-end Speech Translation” ICML 2020 workshop on Self-
supervision in Audio and Speech (SAS), 2020.

Along with the investigation on the impacts of SSL pre-trained English
model on end-to-end AST tasks involving English speech, this thesis also
contributes directly to the training of French SSL models which are of immense
importance for the following collective works:

e S. Evain, H. Nguyen, H. Le, M. Z. Boito, S. Mdhaffar, S. Alisamir,
Z. Tong, N. Tomashenko, M. Dinarelli, T. Parcollet, et al., “Lebench-
mark: A reproducible framework for assessing self-supervised
representationlearning from speech”, in Interspeech 2021, Brno,

Czech Republic, 2021.

e Evain, S., Nguyen, H., Le, H., Boito, M. Z., Mdhaffar, S., Alisamir, S., et
al., “Task Agnostic and Task Specific Self-Supervised Learning
from Speech with LeBenchmark” NeurlPS 2021.

e Solene Evain, Ha Nguyen, Hang Le, Marcely Zanon Boito, Salima Md-
haffar, Sina Alisamir, Ziyi Tong, Natalia Tomashenko, Marco Dinarelli,
Titouan Parcollet, Alexandre Allauzen, Yannick Esteve, Benjamin Lecou-
teux, Francois Portet, Solange Rossato, Fabien Ringeval, Didier Schwab
and Laurent Besacier “Modéles neuronaux pré-appris par auto-
supervision sur des enregistrements de parole en francgais”,
Les 34e Journées d’Etudes sur la Parole (JEP2022).

e Hang Le, Sina Alisamir, Marco Dinarelli, Fabien Ringeval, Solene Evain,
Ha Nguyen, Marcely Zanon Boito, Salima Mdhaffar, Ziyi Tong, Natalia
Tomashenko, Titouan Parcollet, Allauzen Alexandre, Yannick Esteve,
Benjamin Lecouteux, Francois Portet, Solange Rossato, Didier Schwab
and Laurent Besacier, “LeBenchmark, un référentiel d’évaluation
pour le francais oral”, Les 34e Journées d’Etudes sur la Parole
(JEP2022).

This chapter is organized to emphasize these contributions. It discusses our
in-depth study about the impacts of English SSL models for end-to-end AST
(Section , before discussing different aspects of pre-training SSL models
that specifically concern French speech (Section .

7.2 English SSL models for end-to-end AST

As stated in Chapter [5 SSL from speech consists in resolving pseudo-tasks,
for instance, target predicting next samples or solving ordering problems, not
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requiring human annotations as a pre-training for real tasks. Recent works on
ASR suggest that the use of SSL is promising to reduce dependence on labeled
data for building speech systems through acoustic representation learning. For
these reasons, in this contribution, we investigate the possibility to leverage
unlabeled speech for end-to-end AST. We steer our concentration on low-
resource scenarios particularly where:

e ASR pre-training from the source language is not possible due to the fact
that transcriptions of the source recordings are not available (the record-
ings might not be transcribed for some reasons or the source language
in question is poorly written).

e Only a small-medium amount of parallel training data (speech aligned
to translations) is available.

e There exists a larger amount of unlabeled speech, for example, there
are situations when the system needs to translate from speech in a lan-
guage with poorly standardized orthography or even from an unwritten
language.

In summary, this section aims to accentuate the following contributions:

e We propose an in-depth study on the impact of self-supervised pre-
training for AST.

e We show that self-supervised pre-training is particularly efficient in low-
resource settings and that fine-tuning pre-trained representations on the
AST training data is beneficial.

e We show that even in high resource settings, ensembling models trained
with filter-bank and self-supervised representations leads to near state-
of-the-art models without using ASR pre-training.

e We show through our analyses of the learned representations that they
allow us to better discriminate phones, better align source and target
sequences, and are more robust to speaker variability.

7.2.1 Pre-trained SSL models for English

One of the pre-trained English SSL models used in this work is an off-the-shelf
wav2vec model [ trained on LibriSpeech corpus. In order to investigate the
benefit of fine-tuning on our task-specific data, we fine-tune this model on the

Zhttps://github.com/pytorch/fairseq/blob/master/examples/wav2vec/
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full speech corpora used for our AST experiments presented shortly. We recall
one important point that no transcripts nor translations are needed for this
step which requires only raw speech.

These pre-trained SSL models for English, fine-tuned or not, are used as
our features extractors for our downstream AST tasks. The speech repre-
sentations are produced by the context network of the wav2vec model (Sec-

tion [5.3.2)) and are inputted to the AST encoder instead of filter-bank features.

7.2.2 Experimental setup

AST training data: How2 corpus is used for our main experiments [] This
data is further filtered by stripping out too long sentences (sentences longer
than 30 seconds or 400 characters). After this, the lower-resource scenarios are
simulated by randomly splitting the corpus into four sub-corpora of roughly
10%, 20%, 30%, and 60% of the filtered full corpus. We split the corpus such
that it guarantees that smaller partitions are fully included in the bigger ones.
The statistics of all the partitions and the filtered version of the full corpus
can be found in Table [7.I] As regards the development set, we reuse the one
used for our participation in the IWSLT 2019 (Nguyen et al. (2019)). This
comprises 1,984 sentences randomly excluded from the training set. How?2
val set is used as our test data. As for target text processing, we normalize
punctuation marks, and tokenize the text into character-level using Moses.

Partition | #segments | #hours | #src words | #tgt words
10% 17751 28 313K 295K
20% 35858 56 626K 591K
30% 53 698 84 887K 940K
60% 107676 169 1778K 1883K
full 179438 281 2963K 3139K

Table 7.1: Statistics of different How2 data partitions.

Speech features and data augmentation: from speech input, we extract
different speech features [f] of either wav2vec-based or filter-bank+pitch fea-
tures (later denoted as fbanks) as shown in Figure [7.1] Depending on the
experiments, mean and variance normalization (MVN) is optionally applied

3Note that we reuse the version of How2 downloaded on July 12, 2019 Nguyen et al.
(2019).

20ur preliminary experiments on How2 10% with MFCC features which lead to similar
performance as filter-bank are not presented here.
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to the generated features. For wav2vec feature extraction, we either use the
off-the-shelf model trained on LibriSpeech or a model fine-tuned on How?2
training set. MVN parameters are estimated on the speech translation train-
ing set and then applied to the training set, validation set, as well as the test
set. In summary, we have four different self-supervised representations named
wav2vec, wavlvec + norm, wav2vec + FT (fined-tuned wav2vec) and wav2vec
+ FT + norm (details can be found in Table [7.2). These representations
are put into comparison with the conventional filter-bank features. Similar
to Nguyen et al| (2019), filter-bank features are 80-dimensional Mel filter-
bank features, concatenated with 3-dimensional pitch features from windows
of 25ms, and a frame shift of 10ms. MVN is used in the same manner as

for wav2vec features. This gives us two additional speech representations of
dimension 83 named fbanks El and fbanks + norm shown on the last two lines
of Table [7.2] respectively. Data augmentation through speed perturbation is
also applied with factors of 0.9, 1.0, and 1.1 to the training data.

BLSTM
MaxPool

VGG BLOCK CNN

CNN
VGG BLOCK

Figure 7.1: Architecture of the speech encoder: a stack of two VGG
blocks followed by 5 BLSTM layers. We use as input (1)
wav2vec features (that pass through an additional projection
layer to reduce their dimension from 512 to 83), or (2) filter-
bank+pitch features. The input features are optionally nor-
malized (MVN).

5For the rest of the thesis fbanks will actually mean filter-bank+pitch.
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AST model: we use an attention-based encoder-decoder architecture sim-
ilar to the model that performs well at the IWSLT 2019 end-to-end AST
track (Section . However, in order to deal with the high dimensionality
of wav2vec features, we make a minor modification to the speech encoder as
illustrated in Figure [7.I] In detail, in order to compare both input represen-
tations with a similar parameter budget in the architecture (and also because
training an architecture with input features of dimension 512 would be more
computationally expensive), we add a projection block at the bottom of the
encoder | This block contains a linear layer followed by a ReLU, aiming to
reduce the dimension of wav2vec feature size from 512 to 83 (Figure [7.1]). By
contrast, when dealing with fbanks features, the model is exactly the same as
Nguyen et al.| (2019)’s model.

Name Dimension
wav2vec 512 — 83
wav2vec + norm 512 — 83
wav2vec + F'T 512 — 83
wav2vec + FT + norm | 512 — 83
fbanks 83
fbanks + norm 83

Table 7.2: Different representations used in our experiments. “FT” stands
for “fine-tuned”, while “norm” means that mean and variance
normalization is applied. Feature dimension of wav2vec is fur-
ther projected to a smaller dimension (512 — 83).

Hyperparameters’ details: all the models are configured to be trained
in maximum 20 epochs with early stopping after 3 epochs if the accuracy
on the development set does not improve. Adadelta is chosen as optimizer
and dropout is set to 0.3 on the encoder side. In inference time, we set the
beam_size = 10, and we mazxlenratio [Z] = 1.6 to prevent the models from gen-
erating too long sentences. As stated earlier, all our end-to-end models are
similar in terms of architecture except for the speech encoder which is slightly
different between wav2vec and fbanks experiments. The main difference, how-
ever, lies in the following aspects: (1) the amount of training data; (2) speech

50ur implementation of the wav2vec speech encoder, as well as the detailed recipes
for our experiments can be found online: https://github.com/mhn226/espnet/tree/

interspeech2020.

. . maximum_output_length
maxlenratio =

encoder_hidden_state_length


https://github.com/mhn226/espnet/tree/interspeech2020.
https://github.com/mhn226/espnet/tree/interspeech2020.
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representations (wav2vec or fbanks); and (3) the use of MVN normalization
or not.

7.2.3 Experiments and results
7.2.3.1 Experiments on How2

As stated earlier, on each partition of How2 corpus, we train 6 models which
take as input different speech representations (Table , thus in total 30
models shown in Table[7.3] These models are evaluated on How2 val set, which
contains 2,022 segments (about 3.2 hours of speech), in the same conditions
as discussed in Section [6.2]

No. Feature 10% (28h) | 20% (56h) | 30% (84h) | 60% (169h) | 100% (281h)
1 wav2vec 11.33 26.75 30.83 36.33 41.02
2 wav2vec + FT 12.52 27.30 32.11 37.78 42.32
3 wav2vec + norm 16.52 27.33 31.27 37.62 41.08
4 | wav2vec + FT + norm 18.50 27.68 32.17 37.75 41.30
) fbanks 1.03 18.61 27.32 37.23 41.63
6 fbanks + norm 2.11 24.58 30.21 37.56 42.51
7 Ensemble [5, 6] 25.28 31.90 40.39 44.35
8 Ensemble [4, 6] 29.87 34.67 41.22 45.02
9 | Ensemble [1,2,3,4,5,6] 31.88 36.80 42.62 46.16

Table 7.3: Detokenized case-sensitive BLEU scores measured on How?2 val
set of different models trained on different partitions of How2
corpus (En—Pt) with different speech features. FT means fine-
tuned and norm stands for MVN normalization.

The impact of SSL features on low-resource settings, where only 28 and
56 hours of speech data are available, can be clearly seen in the table. It
shows that wav2vec features significantly outperform fbanks on these settings.
Figure confirms this and shows that models trained with wav2vec repre-
sentations converge better and faster. It can be seen in Figure that,
in the extremely low-resource setting of 25 hours of speech, fbanks features
(normalized or not) do not converge.

The impact of normalization and fine-tuning is also notable from both
Table and Figure . In very low-resource settings (like the case of 28
hours), fine-tuning wav2vec can greatly help, and with normalization, the
performance further improves. These impacts of fine-tuning and normalization
as well as the differences between wav2vec and fbanks fade away in higher-
resource settings (169 and 281 hours of translated speech).
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Figure 7.2: Learning curves (accuracy) of models trained on different par-
titions of How?2.

However, our ensembling experiments show that it is beneficial to ensem-
ble different models trained on different speech representations. In detail,
lines 7 and 8 on 100% of How2 indicate that ensembling the best system
(fbanks+norm, line 6) with a system trained with wav2vec (wav2vec+FT+norm,
line 4) is more beneficial than with a better model (fbanks, line 5) also based
on fbanks features, even though wav2vec+FT+norm underperforms fbanks
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on this partition. The results on line 9 also indicate that the ensemble of all
our models leads to BLEU > 30 even in very low-resource training conditions

(56 hours).

Lang Features tst-COMMON | tst-HE
wav2vec 7.56 7.21
wav2vec-+norm 7.83 8.12
fbank 1. 1.
EN.DE anks 50 09
fbanks+norm 4.89 4.87
wav2vec 12.08 12.41
wav2vec-+norm 12.58 12.58
fbank .04 )
EN.FR anks 0.5 0.00
fbanks+norm 7.10 6.37

Table 7.4: AST BLEU on MuST-C 56 hours for En—De and En—Fr.

Lang Features tst-COMMON | tst-HE
wav2vec 10.57 10.43
wav2vec+norm 10.30 10.27
fbank 0.74 0.66

EN-DE —
fbanks+norm 7.68 7.84
wav2vec 16.18 16.68
wav2vec+norm 16.84 16.37
fbank 1.65 0.97

EN-FR anxs
fbanks+norm 14.31 13.86

Table 7.5: AST BLEU on MuST-C 84 hours for En—De and En—Fr.

Finally, in order to compare ourselves with the state-of-the-art of the time
(Inaguma et al] (2020)), we decode How2 dev5 (a.k.a How2 test [f)), which
consists of 2,305 segments (about 3.7 hours of speech), using the ensemble of

8This test set is commonly used by some other works, for instance, Inaguma et al.| (2020)).
However, as explained earlier, at the time we downloaded How2 corpus, several videos were
missing from Youtube, including some files corresponding to this test set. Therefore, we
took How?2 val set to evaluate our models for IWSLT 2019 instead, and continue doing that
in this work. Later, this full How2 dev) set was provided directly by the authors of the
corpus.
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all our models trained on the full corpus (line 9). This gives us near state-of-
the-art BLEU: we obtain 46.16 on How2 val and 47.17 on How2 dev5. This
latter score on devd is to be compared with 48.04 reported with an ensemble
model in [Inaguma et al.| (2020) where ASR and MT pre-training were used,
as well as data augmentation with SpecAugment.

7.2.3.2 Validation on two other language pairs

In order to see if the effectiveness of SSL speech features can be general-
ized in low-resource settings of other language pairs (whose source speech is
in English), we train our models on two subsets of MuST-C En—De and
English-to-French (En—Fr) training data. These subsets are obtained by ran-
domly sampling 56 and 84 hours from the corresponding MuST-C data of each
language pair, simulating training sizes similar to How2 20% and 30%. Four
different types of speech features are extracted from these subsets for training
the same networks described earlier in this chapter (Table and [7.5).

As illustrated by both the tables, MuST-C is more challenging than How?2
(as aslo confirmed by the official IWSLT 2019 evaluation results (Jan et al.
(2019))), but for both language pairs, wav2vec features significantly outper-
form fbanks. This confirms that self-supervised pre-training is useful in low-
resource scenarios.

7.2.4 Analysis of Learnt Representations

The purpose of our analyses presented in this section is to answer the ques-
tion of why wav2vec representations perform better than filter-bank features.
These analyses shall reveal that wav2vec might be (1) better at discriminat-
ing phones, (2) better at aligning source and target sequences, and (3) more
robust to speaker variability.

7.2.4.1 Better phone discrimination

We first replicate an experiment from [Schneider et al.| (2019b) for phoneme
recognition on TIMIT (Garofolo et al. (1993)). Speech representations of four
types wav2vec, wav2vec+norm, fbanks and fbanks+norm are extracted from
train, dev and test split of TIMIT. These features are fed into a simple atten-
tional encoder-decoder model consisting of an encoder with 4 BLSTM layers
of hidden size 320, a decoder with 1 LSTM layer and location-based attention.
The results of Table confirm that wav2vec representations (normalized or
not) are much better at recognizing phones than the fbanks counterparts.
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No. Feature TIMIT dev | TMIT test
1 wav2vec 13.0 15.0
2 | wav2vec + norm 13.9 15.8
3 fbanks 22.2 24.9
4 fbanks 4+ norm 20.7 23.5

Table 7.6: Phone error rate (PER %) on TIMIT dev and test set.

7.2.4.2 Better source-target alignments

In this series of experiments, we evaluate the entropies of the soft alignments
obtained with different speech representations in teacher forcing mode. The
entropy of the probability distribution o4 is evaluated for every target token

as in Equation [7.1}
||

Ht = Z atj log Oétj (71)
j=1

with ay; being the alignment score between target token y, and source
speech frame x;. This measure is then averaged for all tokens at the corpus
level (How2 10%). A low entropy means a high level of confidence of the at-
tention mechanism in its source-target alignments and vice-versa (see example

in Figure [7.3).

No. Feature How2 dev | How2 val
1 wav2vec 0.66 0.66
2 wav2vec + F'T 0.65 0.65
3 wav2vec + norm 0.57 0.57
4 | wav2vec + FT + norm 0.51 0.51
5 fbanks 0.89 0.90
6 fbanks + norm 0.93 0.93

Table 7.7: Averaged entropies of soft-alignments on How2 dev and val set.
AST models trained on 10% partition of How2.

We can see clearly in Table [7.7] that, in our low-resource setting, wav2vec
features lead to better source-target alignments (lower entropy) in compar-
ison with fbanks features. Fine-tuning and normalization of self-supervised
representations also help improve the soft alignments.
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Figure 7.3: Soft alignments between source speech features and target
text for sentence “A outra pessoa perde.”

7.2.4.3 Better robustness to speaker variability

In order to investigate robustness to speaker variability, several Automatic
Speaker Verification (ASV) systems are trained on either wav2vec or fbanks
features extracted from LibriSpeech train-clean-360 dataset using Kaldi. These
ASV systems are based on x-vectors and Probabilistic Linear Discriminant
Analysis (PLDA) (Snyder et al.| (2018])). We use a Time Delay Neural Net-
work (TDNN) model topology similar to the one described in [Snyder et al.
(2018) for extracting x-vectors. Input features are fbanks or wav2vec (op-
tionally normalized) while output corresponds to 921 speakers of the training
corpus. ASV experiments are conducted on the VoxCelebl test (Nagrani et al.
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(2017)) and LibriSpeech test-clean sets ﬂ ASV results (Equal Error Rate -

EER) are presented in Table [7.8

No. Feature VoxCeleb | Libri (f) | Libri (m)
1 wav2vec 22.75 11.22 2.23
2 | wav2vec + norm 20.93 10.54 1.79
3 fbanks 15.78 5.47 0.89
4 fbanks + norm 16.25 3.47 0.67

Table 7.8: Equal error rate (EER %) on the VoxCelebl test and Lib-
riSpeech test sets for female (f) and male (m) speakers.

The table shows that, in all experiments, significantly higher EER scores
are obtained when using wav2vec features than when using fbanks features.
This reaffirms our hypothesis that wav2vec representations remove speaker
information from speech signal, and therefore, are more robust to speaker
variability [’} We would like to thank our colleague Natalia Tomashenko []
specifically for designing this experiment.

7.3 French SSL models pre-training

The previous sections show the effectiveness of SSL speech representations
on the end-to-end AST tasks. A lengthy discussion of Chapter [5] also con-
cludes that this kind of representations is of great potential in other speech
tasks, for example, ASR. However, despite these promising results, we ob-
serve that comprehensive comparisons of SSL models are difficult to make
due to a noticeable lack of standardization in the evaluation process for these
models. Furthermore, most works in SSL have been concentrating on English
with a few exceptions in multilingual SSL (Conneau et al.| (2020)); [Wang et al.
(2021))). For these reasons, we propose LeBenchmark, an open-source and
reproducible framework for assessing SSL from French speech data (Evain
et al.|(2021a,b))). These collective works from a combination of several research
groups in France make direct contributions in different aspects including gath-
ering and documenting large-scale and heterogeneous corpora, training seven

9The trial and enrollment subsets of the LibriSpeech test-clean for the ASV task are
described in more details in [Tomashenko et al.| (2020).

10We would also expect that mean and variance normalization increases EER but this is
not the case. One explanation might be that normalization also removes channel variability
and thus improves ASV.

Uhttps://scholar.google.com/citations?user=xX-frYoAAAAJ&hl=ru
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SSL wav2vec2.0 models, and providing a clear evaluation protocol for four
downstream tasks: (1) ASR, (2) Spoken Language Understanding (SLU), (3)
AST and (4) Automatic Emotion Recognition (AER). We, therefore, find it
necessary to start this section by providing a clarification that the contribu-
tions of this thesis stay mainly in the training of the SSL wav2vec2.0 models,
which are essential for the evaluations of the downstream tasks that follow.
This chapter will review different aspects of training these models along with
their impacts on the performance of the AST tasks.

No. ‘ Corpus ‘ #Utterances ‘ Duration ‘ #Speakers ‘ Speech type
Small dataset — 1K
1 MLS French 263,055 1,096:43 178 Read
(Pratap et al.|(2020)) 124,590 / 138,465 / 520:13 / 576:29 / 80 /98 /
B Medium dataset — 3K
2 African Accented French 16,402 18:56 232 Read
(old]| (2003)) 373 /102 / 15,927 -/ -/ 1856 48 / 36 / 148
3 Att-Hack 36,339 27:02 20 Acted
(Le Moine and Obin|(2020)) 16,564 / 19,775 / — 12:07 / 14:54 / 9/11 /- Emotional
4 CaFE 936 1:09 12 Acted
(Gournay et al.|(2018)) 468 / 468 / — 0:32 / 0:36 / 6/6/- Emotional
5 CFPP2000 9853 16:26 49 Spontaneous
(Branca-Rosoff et al.|(2012)) 166 / 1,184 / 8,503 0:14 / 1:56 / 14:16 2/4/43
6 ESLO2 62,918 34:12 190 Spontaneous
(Eshkol-Taravella et al.|(2011)) 30,440 / 32,147 / 331 17:06 / 16:57 / 0:09 68 /120 /2
7 EPAC 623,250 1,626:02 Unk Radio
(Esteve et al.|(2010)) 465,859 / 157,391 / — 1,240:10 / 385:52 / — ~/ /- Broadcasts
8 GEMEP 1,236 0:50 10 Acted
(Béinziger et al.|(2012)) 616 / 620 / 0:24 / 0:26 / 5/5/ Emotional
9 MPF 19,527 19:06 114 Spontaneous
(Frangoise| (2017); [MPF|(2019)) 5,326 / 4,649 / 9,552 5:26 / 4:36 / 9:03 36 /29 /49
10 PORTMEDIA (French) 19,627 38:59 193 Acted telephone
(Lefevre et al.|(2012)) 9,294 / 10,333 / 19:08 / 19:50 / 84 /109 / dialogue
11 TCOF (Ad;llts) 58,722 53:59 749 Spontaneous
(ATILF|(2020)) 10,377 / 14,763 / 33,582 9:33 / 12:39 / 31:46 119 / 162 / 468
Medium dataset total 1,111,865 2,933:24
664,073 / 379,897 / 67,895 | 1,824:53 / 1,034:15 / 74:10 - -
Large dataset — 7K
12 MaSS 8,219 19:40 Unk Read
(Boito et al.|(2020)) 8219/~ /- 19:40 / — / ~ )/~
13 NCCFr 29,421 26:35 46 Spontaneous
(Torreira et al.|(2010)) 14,570 / 13,922 / 929 12:44 / 12:59 / 00:50 24 /21 /1
14 Voxpopuli Unlabeled 568,338 4,532:17 Unk Professional
(Wang et al.|(2021)) -/-/- —/ -/ 4,532:17 ~/ /- speech
15 Voxpopuli Transcribed 76.281 211:57 327 Professional
(Wang et al.|(2021)) -/=/- —-/ -/ 211:57 -/=/- speech
Large dataset total 1,814,242 7,739:22
682,322 / 388,217 / 99,084 | 1,853:02 / 1,041:07 / 4,845:07 - -

Table 7.9: Statistics for the speech corpora used to train SSL mod-
els according to gender information (male / female / un-
known). The small dataset is from MLS only. Every dataset
is composed of the previous one + additional data; duration:
hour(s):minute(s).
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7.3.1 Data

In this work, we gathered a large variety of speech corpora in French that
cover different accents (MLS, African Accented Speech, CaFE), acted emo-
tions (GEMEP, CaFE, Att-Hack), telephone dialogues (PORTMEDIA), read
speech (MLS, African Accented French, MaSS) and spontaneous sentences
(CFPP2000, ESLO2, MPF, TCOF, NCCFr), broadcast speech (EPAC) and
professional speech (Voxpopuli) (Table [7.9). We would like to thank our col-
league Soléne Evain [}, who is the main contributor to data gathering.

Pre-processing for SSL training: recordings of each corpus are first con-
verted into mono PCM 16 bits, 16 kHz before being segmented into smaller
segments using timestamp information from transcriptions. Following Baevski
et al. (2020b), we remove utterances longer than 30 s. Finally, we group dif-
ferent corpora into different subsets of training data as the following:

e Small dataset (=~ 1k hours): comprises only the MLS corpus for com-
parison with wav2vec2.0 |Baevski et al| (2020b) which uses only read
English speech.

e Medium dataset (=~ 3k hours): consists of MLS corpus and the corpora
presented from line 2 to line 11 of Table [7.9, This combination has in
total 2,933 h of different speech types detailed in the table.

e Large dataset (=~ 7.7k hours): contains the medium dataset and 4 ad-
ditional corpora including MaSS, NCCFr and Voxpopuli (unlabeled +
transcribed). This has in total 7,739 h of speech with a wide range of
speech types presented in the table.

7.3.2 Training and Sharing SSL Models

From the gathered French data described in Section [7.3.1] this thesis con-
tributes directly to the training and sharing seven wav2vec2.0 pre-trained
models. The same as/Baevski et al.|(2020b), we utilize two different wav2vec2.0
architectures namely large and base, each of which is trained on our small
(1K), medium (3K') and large (7TK) corpus. This results in a set of wav2vec2.0
models: W2V2-Fr-1K-base, W2V 2-Fr-1K-large, W2V2-Fr-3K-base, W2V 2-Fr-
3K-large, W2V2-Fr-TK-base, W2V2-Fr-TK-large. In addition, a specific model
(W2V2-Fr-2.7K-base) is trained on a subset of our medium set only containing
MLS and EPAC (2.7K hours of audio) in order to enable further investigation

?https://solene-evain.github.io/
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on the impacts of spontaneous speech on SSL representations. Hyperparam-
eters and architectures for basd™| and largd'"] are identical to those proposed
by [Baevski et al.| (2020b]). Detailed summary of the hyperparameters used to
train our SSL models can be found in Table [.10l

Model Training | Transf | Model | Inner | Heads | Updates
data blocks | dim dim
W2V2-Fr-1K-base 1,096 h 12 768 | 3,072 8 200K
W2V2-Fr-1K-large | 1,096 h 24 1024 | 4,096 16 200K
W2V2-Fr-2.7K-base | 2,773 h 12 768 | 3,072 8 500K
W2V2-Fr-3K-base 2,933 h 12 768 3,072 8 500K
W2V2-Fr-3K-large | 2,933h 24 1024 | 4,096 16 500K
W2V2-Fr-TK-base 7,739 h 12 768 | 3,072 8 500K
W2V2-Fr-7TK-large | 7,739h 24 1,024 | 4,096 16 500K

Table 7.10: Hyperparameters of our pre-trained SSL models.  Transf
blocks, Model dim, Inner dim stand for Transformer blocks,
model dimension, and inner dimension, respectively. Note
that the maximum number of updates set for training each
model is shown in the last column of the table, with one up-
date corresponding to a call to the .backward() function in
PyTorch. In practice, training is stopped at a round number
of updates once the loss observed on the development set of
the MLS corpus reaches a stable point (learning curves are

shown in Figure .

We share our pre-trained wav2vec2.0 models with the community via Hug-
gingFace[?|for further integration with the well-known toolkits such as Speech-
Brain (Ravanelli et al. (2021))), Fairseq (Ott et al. (2019)), ESPnet (Inaguma
et al.| (2020)) or Kaldi.

3https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/config/
pretraining/wav2vec2_base_librispeech.yaml

“https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/config/
pretraining/wav2vec2_large_librivox.yaml

“https://huggingface.co/LeBenchmark


https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/config/pretraining/wav2vec2_base_librispeech.yaml
https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/config/pretraining/wav2vec2_base_librispeech.yaml
https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/config/pretraining/wav2vec2_large_librivox.yaml
https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/config/pretraining/wav2vec2_large_librivox.yaml
https://huggingface.co/LeBenchmark
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Figure 7.4: Evolution of the loss on the development set during the pre-
training of the SSL models.

7.3.3 Experiments on multilingual AST

In this subsection, we briefly present the multilingual AST (translating di-
rectly from French speech to text in another language) results obtained from
using the SSL speech features extracted by the aforementioned wav2vec2.0
models. Besides, we also compare the performance of our pre-trained wav2vec2.0
models with XLSR-53-large, a publicly available multilingual wav2vec2.0 model
shared by Fairseq E We state that this thesis is not responsible for produc-
ing these results. More detailed results, which are produced by our colleague
Hang Le B, can be found in Evain et al.| (2021b). We selectively present some
of the results here in order to illustrate the impacts of our wav2vec2.0 models
to the AST tasks.

Dataset: since we only concern with the translation from French speech,
the training data for the AST models are chosen from the subsets of the multi-
lingual TEDx dataset (Salesky et al. (2021)) which have French as the source
language. This work covers translation directions from French to three target
languages: English (En), Spanish (Es), and Portuguese (Pt), with following
training sizes 50h (En), 38h (Es), and 25h (Pt).

Experiments: in Evain et al.| (2021b), separate models are trained for each
language pair of the multilingual dataset. These models take as input either
80-dimensional Mel filter-bank (MFB) features (baseline models) or learned
representations derived from SSL models. As regards the SSL representations,
beside the direct use of the pre-trained SSL models as feature extractors (re-
ferred to as task-agnostic pre-training), we further fine-tune (presented on the
last 4 lines of Table our pre-trained wav2vec2.0 models on: (1) unla-
belled in-domain task data (referred to as self-supervised task-specific) and

https://github. com/pytorch/fairseq/tree/master/examples/wav2vec
"https://hangle.fr/
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(2) transcribed data (referred to as fine-tune on ASR task-specific). We note
that the SSL models resulted from these fine-tuning processes are also used
as our feature extractors for the multilingual AST task.

Results: some of the results are shown in Table [7.11| (a bigger table of
results can be found in Evain et al| (2021b)). Firstly, it can be seen from
the table that, in general, SSL features of different settings outperform the
baselines using MFB features by a large margin. Secondly, we observe that
the ASR fine-tuning approach (c) yields the best results in comparison with
(a) task-agnostic and (b) self-supervised task-specific fine-tuning. Thirdly, fo-
cusing on the task-agnostic block (a), we see that French SSL models clearly
outperform those pre-trained on multilingual data. Furthermore, when com-
paring across different French SSL model sizes (base versus large), we see that
the large architecture yields considerable improvement over its base counter-
part. Finally, we see that for task-specific models, Fr-7TK-large mostly yields
the best performance in each group.

Features Valid Test
En Es Pt En Es Pt
MFB 1.15+017  0.67+0.15  0.61+0.13 | 1.10+014  0.87+0.12  0.32+0.03
(a) Task agnostic pre-training
Fr-TK-base 15.13+045 12.78+040  2.65+020 | 14.50+045 13.61+044  2.66+0.23
Fr-7TK-large 19.23+054  17.5940.49  9.68+0.37 | 19.04+0.53 18.24+0.49 10.98+0.41
XLSR-53-large | 7.81+033  0.49+0.13  0.43+007 | 6.75+020  0.52+008  0.36-+0.05
(b) Task specific pre-training (self-supervised on mTEDx)

Fr-7TK-large 19.65+055 17.53+0.47  9.35+0.36 | 19.36+0.54 18.95+0.53 10.94+0.38
XLSR-53-large | 6.83+033  0.54+0.14  0.34+003 | 6.75+032  0.34+003  0.29+0.03
(c) Task specific pre-training (fine-tuned for ASR on mTEDx)
Fr-TK-large 21.41+051  20.32+049 15.14+0.48 | 21.69+058 21.57+052 17.43+0.52
XLSR-53-large | 21.09+0.54  20.38+0.56  14.56+0.45 | 20.68+0.53 21.14+055 17.21+0.54

Table 7.11: BLEU on valid and test sets of multilingual TEDx (mTEDx).
The highest value in each group (task-agnostic pre-training,
task-specific self-supervised, and supervised fine-tuning) is
underlined while the best value in each column is highlighted
in bold. Gray numbers denote the standard deviation com-
puted using bootstrap re-sampling (Koehn| (2004])).

7.4 Conclusion

In this chapter, we have presented our investigation on the impacts of self-
supervised learning from speech on end-to-end AST performance. This, to
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the best of our knowledge, is one of the first efforts to use SSL for the AST
task. Specifically, we use a pre-trained English wav2vec model, a CPC model
pre-trained from unlabeled speech, as a feature extractor for a downstream
AST task that concerns English as the source language. Our experimental
results show that self-supervised pre-training is particularly efficient in low-
resource and medium-resource settings, when the amount of speech translation
training data is smaller than 100 hours, and that fine-tuning CPC models
on the AST training data further improves the performance. Furthermore,
in higher resource settings, we observe through experiments that ensembling
AST models trained with filter-bank and CPC representations leads to near
state-of-the-art models without using any ASR pre-training. Our analyses
show that self-supervised representations show better phone discrimination,
source-target alignments and speaker robustness, which might be responsible
for this significant improvement in comparison with the baseline filter-bank
features. This might be particularly beneficial in the situation where we need
to develop a system which translates from speech in a language with poorly
standardized orthography or even from speech in an unwritten language.

In addition, this chapter also presented our contributions in the training of
several SSLL models from French speech. Particularly, we train 7 wav2vec2.0
models of different model sizes on different combinations of training data.
These models are used in our open-source and reproducible framework for as-
sessing SSL from French speech data namely LeBenchmark. We show results
on a multilingual AST setting, which reaffirm that SSL features marginally
outperform the baselines filter-bank features, and that fine-tuning SSL models
on the task-specific data in a supervised manner can lead to great improve-
ments.

Finally, we must state that even though this kind of speech representations
is proven to be strongly effective for the AST task, in the remainder of this
dissertation, we shall come back to using filter-bank features in the exper-
iments concerning online AST. This is due to the computational constraint
that we encountered during the process. Online AST shall be shown to be
more expensive in terms of computation, and therefore, we have not been able
to apply SSL features to this task.



CHAPTER 8

Online Neural Speech Translation

8.1 Introduction

In Chapter [2 we discussed offline end-to-end AST models which generate
translation text conditioned on the richer context of the whole encoded input
sequence. This is to be distinguished from online AST (discussed in Chapter [4))
which is much more challenging due to the fact that the encoded context from
which the translation text is conditioned is generated from partial input, and
therefore, is somewhat not as rich as in offline AST. Most efforts so far in online
AST focus either on developing online decoding strategies which allow pre-
trained offline AST models to function in the online fashion; or training online
models which are backboned by the architectures similar to offline models with
or without additional components. This chapter is dedicated to presenting our
contributions in online AST which include both the mentioned aspects:

e Developing an online decoding strategy that allows leveraging pre-trained
offline models to work in online mode.

e Designing an online encoding strategy that specifically allows ULSTM
speech encoders to work more effectively in online mode.

e Fine-tuning pre-trained offline models in an online training fashion,
which boosts the overall performance of the online systems.

This Chapter is organized to emphasize all these contributions, firstly talk-
ing about our proposed decoding policy which is a variant of the wait-k policy
presented earlier in this thesis. This is followed by our online encoding ap-
proach that boosts the performance of the online ULSTM speech encoders.
Finally, we will show how fine-tuning pre-trained offline models in online mode
helps improve the performance of the online translation system.

Before embarking on the detailed discussion, it is worth mentioning that
our works are significantly constrained by our computational capacity. This
becomes more considerable when training the models in online mode is in-
volved. We shall see later that in order to fine-tune such models, a part of the
training data which contains long sentences needs to be filtered out, and for



8.2. Online decoding policy 123

this reason, training the models from scratch is out of the question. Despite
this great challenge, the work presented in this chapter results in the following
publications:

e H. Nguyen, Y. Esteve, and L. Besacier, “An empirical study of end-
to-end stmultaneous speech translation decoding strategies”, in
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), IEEE, 2021.

e H. Nguyen, Y. Esteve, and L. Besacier, “Impact of encoding and
segmentation strategies on end-to-end simultaneous speech
translation”, in Interspeech 2021, Brno, Czech Republic, 2021.

8.2 Online decoding policy

In this section, we present our proposed decoding strategy which shall be
illustrated as a modification to the original wait-k policy proposed for text-
to-text translation (Ma et al. (2019)), or more closely to another modification
for speech-to-text translation proposed by [Han et al| (2020). We shall prove
that this simple yet efficient decoding approach allows leveraging any pre-
trained end-to-end offline AST model for simultaneous speech translation.
Our contributions are the following:

e Adapting the algorithm from Han et al. (2020)), which is already an
adaptation of Ma et al.| (2019)’s wait-k, but introducing the possibility
to write several output tokens at a time.

e Conducting empirical experiments showing that this adaptation allows
to control AL/BLEU trade-off along different latency regimes with a
pre-trained end-to-end AST model that does not need to be re-trained
in online mode.

e Evaluating the proposed method for 2 different language pairs En—Pt
and En—De and with different output granularities (characters or BPEs).

8.2.1 Pre-trained end-to-end offline model

We reuse the end-to-end offline models presented in Section and for
evaluating our online decoding policies. We recall that these models are based
on the encoder-decoder with attention architecture, whose speech encoders
stack layers of BLSTM after CNN-based blocks. We shall discuss the special
treatment required for this specific kind of speech encoders in online mode.
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For the purpose of evaluating our proposed approach on different language
pairs and different output granuarities, the following pre-trained models are
leveraged:

e EN—PT pair: we reuse our best offline character-based (char) model,
and two BPE-based (BPE400, and BPE2K) models (model 3%, 4 and 5
of Table , respectively). The char model scores 26.91 BLEU, while the
BPE400 and BPE2K model score 24.73, and 23.11 BLEU respectively
on MuST-C tst-COMMON, in beam search mode (beam_size = 10) [[]

e EN—DE pair: the offline char EN—DE we choose for evaluating our
method is model 3* in Table which scores 23.55 and 22.35 BLEU
on MuST-C tst-COMMON, and MuST-C tst-HE, in beam search mode

(beam_size = 10), respectively.

8.2.2 Simultaneous decoding strategies

We see in Chapter [3 that the deterministic wait-k (Ma et al. (2019)) is a simple
but effective online decoding strategy for text-to-text translation. We also see
in Chapter [4] that, when adapting this strategy for the online speech-to-text
translation task, instead of reading only one input token (speech frame in this
case of speech-to-text translation), Han et al.| (2020) propose to read more
than one speech frame at each step (s > 1). We are inspired by these works
to propose yet another modification to|Han et al.| (2020)’s policy, which allows
us to produce more than one target token at each step. Furthermore, both
Ma et al| (2019) and Han et al| (2020) use Transformer-based AST models
which are re-trained in an online fashion (the whole models are learned to deal
with partial input). As stated in Chapter @, our pre-trained offline models are
LSTM-based instead. It is, therefore, reasonable for us to adapt the wait-k
policy to our own context of leveraging LSTM-based models. Moreover, we
also hypothesize that simpler LSTM speech encoders might be more robust
to limited source context when no re-training is performed in online mode.
Consequently, our LSTM-based end-to-end models trained in offline mode are
reused without any adaptation nor re-training in this work.

In summary, for online decoding, our proposed deterministic decoding
strategy is described with the following parameters (Figure [8.1)):

e k (wait parameter): presents the number of acoustic frames (at the
beginning of the input speech features sequence) read before writing the

LOur performance in simultaneous mode will be, in contrast, given with greedy decoding
mode.
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first output token. This is equivalent to the k parameter introduced in
Ma et al.| (2019) and Han et al. (2020). In our application, k = 100 or
200 frames which corresponds to 1s or 2s.

e s (stride parameter): is similar to the s parameter of Han et al.| (2020),
which is introduced for satisfying the need of denoting the number of
acoustic frames in the input speech features sequence to be consumed in
order to produce each new target token. For speech-to-text translation
task, s is usually greater than 1 whereas the original wait-k (Ma et al.
(2019)) always sets s = 1. In this work, we set s = 10 or 20 in our
experiments which is equivalent to 0.1s or 0.2s.

e N (write parameter): is our proposed parameter, which denotes the
maximum number of output tokens written at each decoding step. This
is different from the wait-k policies of [Ma et al. (2019) and Han et al.
(2020), which use a fixed N = 1. In our experiments presented later in
this section, we set N = 1, 2 or 3 and output tokens can be characters

or BPEs.
Source frames
T1 Ty X3 Ty Tp </$>

<§>

1 N>1
Y2
?;3 ]
E Y3

Ya

A

Ys 1

</s> \
k s>1

Figure 8.1: Our proposal Nguyen et al| (2021) for modification of the
wait-k policy that allows the wait-k policy to read more than
1 source frames (s > 1) at each decoding step after the first
step in order to write at maximum N > 1 target tokens.

To formalize our method, the same as Chapter [d, we keep the definition
of (X,Y) as the source audio sequence paired with the corresponding target
text translation, and g(t) as the number of source frames consumed by the
encoder at each decoding step ¢. In addition to these, we introduce ¢(t) as the
number of target tokens generated up to step t. In this work:

g(t) =min{k+ (t — 1) * s, | X|} (8.1)
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q(t) = q(t = 1) +w (8.2)

with ¢(0) = 0 and 0 < wy; < N denotes the number of target tokens
emitted at step t. At each decoding step ¢, the model encodes g(t) source
frames in order to decode at maximum N target tokens.

Past frames

HHHHF’HHHHHHHH

Figure 8.2: Illustration of the re-encode encoding strategy.

Since our pre-trained offline AST models are based on Bidirectional Long
Short Term Memory (BLSTM) networks, every time new frames are read, we
must re-encode from beginning of the source sequence (Figure |8.2)):

h' = encode(X") (8.3)

with X' = 2<y4) = (21,22, ..., Tyg)) being input buffer at step t. We shall
refer to this encoding approach as “re-encode encoding strategy”, which differs
from other encoding approaches presented later in this chapter.

On the decoder side, it takes the encoder’s hidden states sequence h!, and
the cached previous hidden state zg;—1) to compute w; hidden states, and
predict w; corresponding target tokens as the following:

zj = decode(h', zj_1,yj_1) (8.4)

y; = predict(z;) (8.5)

with the target token index j € [¢(t — 1) + 1, ¢(t)]. We update the output
buffer Y by simply appending (Yq(—1)+1, ---» Yg(t)) to Y71

Y=yt + (yq(tfl)Jrla ey yq(t)) (8-6)
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This goes on until the end of sequence token < /s> is predicted, or the
length of the output buffer |Y| exceeds a threshold EI In case the decoder
generates < /s> before the whole source sequence X is read, we only append
the tokens preceding < /s>, then stop generating target tokens for this step
and move to the next step, beginning with reading more source frames.

8.2.3 Experiments and results

In this section, we discuss our evaluations of our presented wait-k policy with
our pre-trained offline models presented in Section [8.2.1, We focus on inves-

tigating:

e Impact of decoding parameters (k, s, V).

e Impact of the target granularity (characters versus BPEs).

e Comparing our method with the state-of-the-art performance on the

same task.

No. | k s | N tst-HE tst-COMMON
1 | 100 | 10| 3 | 3.01 /743 4.42 / 800
2 100 | 10| 2 | 4.26 / 1049 6.89 / 1135
3 100|203 | 549 /1353 8.61 / 1441
4 1200|103 | 7.07 /1521 10.37 / 1552
5 1200|110 | 2 | 8.77 / 1836 12.79 / 1931
6 | 100 | 20| 2 | 8.77 / 2062 12.68 / 2097
7 10010 | 1 | 9.46 / 2146 12.85 / 2157
8 1200 |20 | 3| 10.38 /2223 14.6 / 2286
9 |200]20| 2 | 13.8 /2934 16.59 / 2840
10 [ 200 | 10 | 1 | 14.11 /2973 | 16.83 / 2880
11 [ 100 | 20 | 1 | 14.64 / 3487 | 15.79 / 3086
12 {200 {20 | 1 |17.15 /4066 | 17.94 / 3610
13 offline 20.54 / 7005 | 21.38 / 5782

Table 8.1: (BLEU / AL) scores of the En—De char model evaluated on
MuST-C tst-HE and MuST-C tst-COMMON. Sorted by AL of

tst-HE in increasing order. AL is in mulliseconds.

2 o , . maz_output_sequence_length
In this WOI‘k, we set a max,lengthjatzo ~ encoder_hidden_state_sequence_length

En—DE experiments, and 1.6 for En—Pt experiments.

= 1.0 for
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No. | k s | N | tst-COMMON
1 1100 |10 3 4.67 / 611
2 | 100 | 10 | 2 8.38 / 907
3 1100 20| 3 11.43 / 1237
4 1200|101 3 11.61 / 1402
5 120010 2 15.97 / 1748
6 | 100 | 20 | 2 16.67 / 1948
7 100 |10 | 1 16.95 / 1976
8 120020 3 17.94 / 2106
9 20020 2| 20.69 /2697
10 1200 (10| 1 20.98 / 2735
11 | 100 {20 | 1 20.64 / 2910
12 1200 (20| 1 22.67 / 3505
13 offline 25.07 / 5986

Table 8.2: (BLEU / AL) scores of the En—Pt char model evaluated on
MuST-C tst-COMMON. Sorted by AL in increasing order. AL

is in milliseconds.

8.2.3.1 Impact of decoding parameters

In this series of experiments, our pre-trained offline char models (Section
are leveraged to decode in online decoding mode using our proposed wait-
k policy with different combinations of (k,s, N). The experimental results
(BLEU for different AL) are given in Table for En—De and in Table
for En—Pt. We note that since our online policy only allows greedy decoding,
for a fair comparison with the online mode, the offline models are re-decoded
in greedy decoding mode. This gives the results on the last rows of both the
tables. We observe that:

e The 3 parameters (k, s, N) of the proposed policy allow us to generate
results over the whole range of AL (from very low latency regimes < 1s
to higher AL values between 2s and 3s).

e Our strategy obtains decent BLEU scores for a latency of 2s (BLEU=14.60
for En—De and BLEU=17.94 for En—Pt on MuST-C tst-COMMON,

respectively).

e When looking at lines 6-7 and 9-10 of Table[8.1]and [8.2], we observe that
writing two characters at each decoding step (N = 2) with bigger stride
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(s = 20) seems to be slightly better in terms of AL, yet slightly worse
in terms of BLEU scores than writing one character at a time (N = 1)
with smaller stride (s = 10).

8.2.3.2 Impact of target granularity

In order to investigate the impact of different target token types, we decode
our pre-trained offline BPE2K and BPE400 models (Section [8.2.1)), using our
proposed online decoding strategy. We alternate between different (k,s, V)
triplets, with & = [100,200], s = [10,20], and N = [1,2]. We then sort
the results by the increasing order of AL of each model, and for better vi-
sualization, we pick the (k,s, N) combinations that give the best BLEU/AL
trade-offs and strip off the points that have close AL but worse BLEU. The
results are shown in Figure , whose data points correspond to (k, s, N) =
(100, 10, 2), (200, 10, 2), (200, 20, 2), (200, 20, 1). We note that the results are
given as a trend and we need to clarify that our offline char-based and BPE-
based models have different performance as well (Table [6.6]).

D S it S S S SRS R Y SRR I
24
99 o=
20T T /9 o
18
16 3
2 14 &
= 12
- 10 --- Offline char
8 o Offline BPE400
6 --- Offline BPE2k
/ —B- char
o BPE400
-8 BPE2K

0 500 1000 1500 2000 2500 3000 3500 4000
Average Lagging (AL) in ms

Figure 8.3: Character-based vs BPE-based models on En— Pt translation,
evaluated on MuST-C tst-COMMON.

We can see from the figure that, in general, for a same (k, s, N) triplet,
char model tends to give higher BLEU score, but bigger AL than the two
BPE models. We can observe the same trend when comparing BPE400 with
BPE2K model. Our explanation is that because BPEs are bigger token units
than characters, when being forced to generate approximately the same num-
ber of target tokens (the same N) from the same amount of context in terms of
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number of source frames (same (k, s)), BPE models should give worse trans-
lation quality. On the other hand, BPE models take less number of source
frames than char model to make up a word, therefore they achieve smaller AL
with similar (k, s, N) settings.

8.2.3.3 Comparison to the state-of-the-art

In this subsection, we compare the performance of our method with the win-
ning system for speech-to-text online translation at the IWSLT 2020 (El-
bayad et al. (2020b)). This system is a cascade of an ASR system paired
with an online MT system, translating English speech into German text. The
ASR system, which is used to stream the input sequence, is a strong hybrid
HMM/DNN system built using the Kaldi speech recognition toolkit (scoring
WER=14.2% on MuST-C tst-COMMON in offline mode). The online MT
system, which is used to generate translation from partial hypotheses handed
by the ASR component, is a Transformer-based wait-k decoder with a unidi-
rectional encoder. Instead of optimizing a single decoding path corresponding
to a specific k value, |[Elbayad et al.| (2020b)) jointly optimize the online MT
model across multiple wait-k paths (i.e, k values are generated randomly dur-
ing the training process).

371 R D OSSR U OO
22 oo —— 1 -
20
—
= 14
12 [3/ - -- Cascade offline
10 --- e2e offline
—8- e2e model
8 —B- ktrain = 0
6 -8 multi-path

0 500 1000 1500 2000 2500 3000 3500 4000
Average Lagging (AL) in ms

Figure 8.4: Comparison of our proposed character-based En—De end-to-
end model (e2e model) with that of the (winning) ON-TRAC
cascaded models with (multi-path) or without (ky.qein = 00) re-
training for simultaneous mode. Note that because [Elbayad
et al.| (2020b) use the original AL metric to compute their la-
tency, in this curve, we also use original AL (Ma et al.| (2019))
to compute the latency of our end-to-end model.
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In Figure for better visualization, (k, s, N') combinations for the En—De
char model which give close AL regimes to that of the above cascaded models
are chosen. We can observe from the figure that our proposed decoding strat-
egy (the blue curve) performs reasonably well in comparison with the cascaded
models with re-training in online mode (multi-path) or without (kyqm = 00)
re-training. We emphasize that our method (dubbed as e2e model) is better
in low latency regimes while the cascaded model is better in higher latency
regimes. We further stress that our method does not require re-training in
online mode, it is thus fair to compare it with the corresponding cascaded
model: kirgin = 00.

8.3 Online encoding strategy

We have just presented above our wait-k decoding policy which allows us
to utilize any pre-trained offline AST model for the online AST task. How-
ever, since our pre-trained models’ speech encoders are based on Bi-directional
Long Short-Term Memory (BLSTM), re-encoding of the full input is needed
cach time a new speech block is read (Figure [8.2). We shall show in this sec-
tion that this encoding approach is highly inefficient for the online translation
task and that although replacing BLSTM by ULSTM encoding degrades the
performance in offline mode, it actually improves both efficiency and perfor-
mance in online mode. This observation is similar to that of [Elbayad et al.
(2020a)) for online text translation. Furthermore, this section also presents our
investigation of the segmentation methods for the speech flow for alternating
optimally between READ (encoding input) and WRITE (decoding output)
operations.

In summary, the contributions of this thesis presented in this section are:

e Proposing to replace BLSTM speech encoder by ULSTM speech encoder
and conducting experiments that show when using the same re-encode
encoding strategy (Figure [8.2), ULSTM speech encoder yields better
inference speed and performance in comparison with BLSTM speech
encoder.

e Proposing a new encoding strategy named ULSTM Qwverlap-and-Compensate
designed specifically for our ULSTM speech encoder and showing that
the proposed method further improve both inference speed and perfor-
mance of the translation system.

e Analyzing the impact of speech flow segmentation on the BLEU/AL
trade-off, concentrating on the comparison of three segmentation meth-
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ods including fixed interval boundaries, oracle word boundaries and ran-
domly set boundaries.

D:I:\j:\:\:‘j Read independent chunks

Problematic
positions

(a) ULSTM reads independent chunks of frames

[TTTTTTT] Overlap
R 3 : several past
H WT [ [T} frames
M 11 [ 11
\ele
VGG

Discard last
positions

(b) ULSTM overlap-and-compensate encoding strat-
egy

Figure 8.5: Illustration of different encoding strategies.

8.3.1 Overlap-and-compensate encoding strategy

As stated earlier, our speech encoder presented in Section 8.2.2 must re-encode
from the beginning (from left-to-right and from right-to-left) the input speech
sequence every time new input frames are consumed. This is proven to be
suboptimal, at least for online text translation, by Elbayad et al.| (2020a).
They show that, for online text translation, using a ULSTM encoder not
only has better decoding speed but also yields better BLEU/AL trade-off.
This encouraging observation serves as a major force that drives our efforts
for replacing BLSTM by ULSTM speech encoders. In order to do this, we
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first retrain an offline model similar to the one presented in Section [8.2.2]
except that the speech encoder is modified to stacked ULSTM layers instead
of BLSTM layers after the VGG-like blocks. After this, using the same wait-£
decoding policy, we make comparisons between BLSTM re-encode with two
encoding methods for ULSTM encoder as follows:

ULSTM Re-encode strategy: in this encoding strategy (Figure , the
speech encoder still has to re-process the full speech sequence left-to-right
every time new speech frames are read. However, since the ULSTM speech
encoder is used, this ULSTM Re-encode approach liberates us from computing
the BLSTM’s right-to-left re-encoding pass. Therefore, we expect that it
would improve the decoding speed in comparison with BLSTM Re-encode.

ULSTM Opverlap-and-Compensate strategy: is our proposed method specif-
ically for leveraging AST models whose speech encoders are similar to ours.
Firstly, we argue that even though ULSTM Re-encode improves decoding
speed in comparison with BLSTM Re-encode, re-encoding the full sequence
left-to-right each time new speech frames are read is still suboptimal. This mo-
tivates more local ways of encoding newly arrived speech frames, one of which
is to feed chunk by chunk of input frames independently (Figure and
the encoded representations at each step can rely on the current input frames
plus the representation of the previous step. This turns out to be a poor
solution as it gives very disappointing results in terms of translation quality
(measured by BLEU). We suspect that this is probably because of the quality
deterioration of the VGG blocks’ output representations due to padding is-
sues near the chunk boundaries (especially in the last several positions of the
representations). As an alternative, when dealing with ULSTM speech en-
coders, we propose an Querlap-and-Compensate encoding strategy. In detail,
this approach allows the encoder to read extra frames from the past in order
to compensate for some discarded positions at the end of the previous output
representation of the VGG-like blocks which, as we have just argued, might
be the culprits that cause the aforementioned problem (Figure 8.5(b)).

Algorithm [I] describes the overlap-and-compensate approach applied to
the fixed interval segmentation (i.e, our wait-k decoding policy presented in
Section [8.2.2). In this algorithm, another parameter overlap is introduced. It
decides how many past frames the encoder should read in addition to the newly
arrived speech frames in order to generate better representations for each step.
Note that, our re-encode strategy corresponds to overlap = 0,0f fset = 0).
In the series of experiments that are coming, we set overlap corresponding to
half of the number of input frames of the current step (overlap = round(s/2)).
The impact of the overlap size shall be mentioned later in this chapter.
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Algorithm 1 Overlap-and-Compensate encoding strategy

Input: sequence z;

Output: representation h;

Initialization step t = 1, wait parameter k, stride parameter s, total number

of frames read so far g = k, of fset =0,
finish_read = False, hg = None,
overlap = round(k/2); # Overlap half of chunk_size
while g < |z| do
if £ > 1 then

| overlap = round(s/2);
end
if g >= |z| then

| g = |z|; overlap = 0; finish_read = True;
end
xy = x[of fset : g]; # A chunk read at time t
hy = Encode(xy, overlap, hy_1, finish_read);
g+ =s;t+=1; of fset = g — overlap;
end

Fuction Encode (x, overlap, prev_h, finish_read):
num_discard = round(overlap/4);
hogg = VGG(2);
if not finish_read then
# Discard num_discard positions in the end
new_length = |hyz4| — num_discard;
hugg = hugglO : new_lengthl;
end
return hy sy = ULSTM (hygg, prev_h);

8.3.2 Experiments and results
8.3.2.1 Pre-trained models

As mentioned earlier, we aim to compare BLSTM and ULSTM speech en-
coder using different online encoding strategies. We rely on the char models
of two language pairs En—De and En—Pt presented in Section and
for our experiments concerning BLSTM speech encoders. Regarding the ex-
periments related to ULSTM speech encoders, since this kind of models does
not exist before, we pre-train one offline ULSTM model for each language
pair with exactly the same configuration as the corresponding BLSTM model,
only replacing BLSTM layers by ULSTM layers. We give an overview of the
pre-trained models as follows:

En—De language pair: for the experiments related to the BLSTM model,
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we reuse the char model presented in Section [6.3] which scores 21.38 and 20.54
BLEU on MuST-C tst-COMMON, and tst-HE, in greedy decoding mode, re-
spectively. To recall, this model is trained on a combination of overall more
than 750h of translated speech from MuST-C En—De, Europarl-ST En—De,
and How?2 synthetic (i.e. the German translation has been automatically gen-
erated by a text-to-text machine translation system). On this same training
set, we pre-train another offline ULSTM model with exactly the same configu-
ration as the BLSTM model, only replacing BLSTM layers by ULSTM layers.
The resulting ULSTM model scores 18.21 and 17.98 BLEU on tst-COMMON,
and tst-HE, in greedy decoding mode, respectively.

En—Pt language pair: the char model presented in Section [6.2] which
scores 25.07 BLEU on MuST-C tst-COMMON in greedy decoding mode, is
utilized for our experiments concerning the BLSTM model. This model is
also trained on a merged training set from multiple corpora including MuST-C
En—Pt and How2 corpus. On this combination of about 674 hours of training
data, we train one offline ULSTM model with a similar configuration as the
BLSTM model, except that ULSTM layers replace the BLSTM ones in the
speech encoder. This model scores 24.13 BLEU on MuST-C tst-COMMON
set.

8.3.2.2 Impact of encoding strategies

Our purpose of conducting this series of experiments is to compare differ-
ent models using either BLSTM or ULSTM speech encoders with different
encoding strategies (re-encode versus overlap-and-compensate).

En—De language pair: on MuST-C tst-COMMON and tst-HE, we eval-
uate the presented pre-trained BLSTM and ULSTM model using different
encoding strategies. In terms of decoding strategy, we utilize the wait-k
presented in Section with different (k,s, N) triplets (k = [100,200],
s =[10,20], and N = [1,2]).

The BLEU/AL trade-off obtained from these experiments is illustrated in
Figure [8.6 We can observe from the figure that models with ULSTM speech
encoders (when using either re-encode or overlap-and-compensate encoding
strategy) give consistently better BLEU/AL trade-off than the model with
BLSTM speech encoder using re-encode encoding strategy, on both MuST-
C tst-HE and tst-COMMON. It is also noticeable from Figure that our
proposed method, the ULSTM overlap-and-compensate strategy, outperforms
the ULSTM re-encode encoding strategy, especially in low-latency regimes.
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Figure 8.6: Comparing translation models with BLSTM re-encode / UL-
STM re-encode / ULSTM overlap-and-compensate encoding
strategies, evaluated on MuST-C tst-HE and tst-COMMON.

In order to investigate the actual time spent decoding each sentence of
different encoding strategies, we exclusively use the same CPU machine to
decode the whole MuST-C tst-HE set using either BLSTM, ULSTM re-encode
or ULSTM overlap-and-compensate encoding strategy. The actual time spent
decoding each sentence of each encoding approach is measured and averaged
over the whole test set. For better visualization of the difference between the
encoding strategies, in each latency regime, the time spent of BLSTM is set as
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a speed unit, and the results of ULSTM re-encode and ULSTM overlap-and-
compensate are reported relatively to this speed unit. It is shown in Table
that: (1) ULSTM models are much faster than the BLSTM model no matter
which encoding approach is utilized; (2) remarkably, our proposed ULSTM
overlap-and-compensate is fastest among all encoding strategies (about 17
times faster than the BLSTM, and 9 times faster than ULSTM re-encode,
respectively).

Latency regime

Encoding
2000ms | 3000ms | 4000ms
BLSTM 1 1 1
ULSTM re-encode 0.53 0.53 0.53
ULSTM overlap-and-compensate 0.06 0.06 0.06

Table 8.3: Decoding speed for models with BLSTM/ULSTM re-
encode/ULSTM overlap-and-compensate strategies in different
latency regimes, measured on MuST-C tst-HE, with the aver-
age time spent by BLSTM serves as the time unit, and the
average time spent of others are drawn in comparison with
this unit.

En—Pt language pair: the same as the En—De language pair presented
above, we conduct similar experiments, whose results are shown in Figure|3.10]
It confirms that our proposed ULSTM overlap-and-compensate encoding strat-
egy significantly outperforms the BLSTM counterpart.

8.3.2.3 Impact of speech input segmentation

In this section, we establish a goal of answering a scientific question: which
methods amongst the following methods for segmenting the speech flow: (1)
fixed interval boundaries segmentation, (2) oracle word boundaries segmen-
tation, and (3) randomly set boundaries segmentation is optimal for online
speech translation in the context of our presented encoding and decoding
strategies? We focus on the En—De language pair in this section.
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Figure 8.7: BLEU/AL trade-off for different speech input segmentation
methods, evaluated on En—De MuST-C tst-HE, using UL-
STM owverlap-and-compensate approach.

Fixed interval boundaries segmentation: is technically the way of feeding
input speech frames as in our wait-k policy (Section[8.2.2] To recall, this deter-
ministic decoding strategy reads at the first reading operation k first acoustic
frames of the input speech features sequence. At each reading operation after
this, the system continues consuming fixed intervals of s frames. A writing
operation is put after each reading operation, which writes at maximum N
output tokens.

Oracle word boundaries segmentation: attempts to feed relatively precise
word-by-word speech chunks instead of fixed-length chunks to the system at
each time step. In order to do this, we segment the input audio which is
at phrase level into words using Montreal Forced Aligner (McAuliffe et al.
(2017)). We rely on a publicly available pre-trained English model[[] In terms
of decoding strategies, we slightly modify our wait-k policy as the following:

e Wait parameter k: remains the number of frames the encoder should
wait before starting writing. This serves as an upper bound rather than
a precise number of frames read. In detail, at the first decoding step,
the encoder reads the first several pre-segmented words until the sum of
their corresponding numbers of frames total_number_of_frames > k.
In this work, we experiment with k& = [0, 50, 100, 150, 200].

3Details about this model can be found here: https://montreal-forced-aligner.
readthedocs.io. Note that we use this model out of the box, without specifying the beam
width.
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e Stride parameter s: is the number of source words (chunks of frames)
that is read at each decoding step after the first step. In this work, we
keep s = 1 for all our experiments related to this segmentation approach.

e Write parameter N: remains the maximum number of output tokens
(characters) written at each decoding step. We experiment with N =
[1,2] in our experiments related to this segmentation approach.

Randomly set boundaries segmentation: cuts the audio input into random-
sized audio chunks and feeds each of these chunks to the translation system
at each reading step. Note that we avoid unreasonable fluctuation of the size
of each chunk by setting a lower bound (the minimum number of frames) and
an upper bound (the maximum number of frames) for each chunk. Within
these constraints, the number of frames in each chunk is randomly gener-
ated. In this work, we experiment with [low_boundary,high_boundary] =
[5,10], [5, 20, [5, 50], [5, 100], [10, 50], [10, 100]. The number of frames in the
last chunk is adjusted so that the sum of frames in all chunks is equal to
the length of the input sequence. Regarding the experiments related to this
segmentation method, N = [1,2].

We note that: (1) algorithm |1 when applied to the oracle word boundaries
segmentation and the randomly set boundaries segmentation method would
slightly change: s = |segment|[t]| — |segment[t —1]|, and k = |segment[0]|; (2)
as for the oracle word boundaries, segment|0] corresponds to all words read
at the first decoding step.

Figure illustrates that the ULSTM overlap-and-compensate encoding
strategy, which is our best presented setting so far, yields the best performance
with the fixed interval boundaries segmentation. By contrast, it astonishes us
that our system performs worse with the oracle word boundaries segmentation
than with the fixed interval boundaries as it almost always yields bigger AL
in order to achieve comparable BLEU scores. Finally, as expected, our system
performs the worst with the randomly set boundaries segmentation. Its BLEU
scores approach 0 (the red dots at the bottom of Figure when the segment
sizes are too small ([low_boundary, high_boundary] = [5,10]).

8.3.2.4 Highlighting the most difficult utterances for simultaneous decod-
ing

Elbayad et al.| (2020c) introduce a metric to measure the lagging difficulty of
an utterance by using its source-target text alignment as an indicator of how
difficult it is to translate an input. In order to measure this, after estimating
source-target ((X,Y)) alignments (for instance with fast-align (Dyer et al.
(2013)))), they define a non-decreasing function 2%%"(¢), denoting the number
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of source words needed to translate a target word. This function guarantees
that at a given decoding position ¢, 2%%9"(t) is larger than or equal to all the
source positions aligned with ¢. Lagging difficulty (LD) is then defined as in
Equation [8.7| below, with 7 = argmin,{t|z; = |z|}:
LD(X,Y) = ! > gt — ﬁ(t —-1) (8.7)
T = Y]

In this subsection, we attempt to see if this metric can also be a good in-
dicator for the speech translation task. In order to investigate this, based on
LD, we extract the 100 most difficult and the 100 easiest sentences according
to the metric, and report the BLEU/AL trade-off (achieved by our best set-
ting: ULSTM overlap-and-compensate encoding strategy coupled with wait-k
decoding strategy) for these sets of utterances. The results shown in Fig-
ure indicate that LD metric could be a good tool for highlighting the most
difficult utterances for simultaneous decoding. This is because the AL/BLEU
curve for the hardest utterances is clearly below (in the BLEU scale) and
much wider spread (in the AL scale) than the one for the easiest utterances.
This suggests the possible usage of LD for building specific challenge sets for
end-to-end simultaneous speech translation.
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Figure 8.8: BLEU/AL trade-off scored on different subsets of En—De
MuST-C tst-HE based on Lagging Difficulty (LD).

8.4 Fine-tuning online model

Earlier in this chapter, we advocated for reusing pre-trained offline models in
online mode. We propose in this section to use the pre-trained offline model
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to initialize the training of that same model but in a training more adapted
to online translation. This can be referred to as fine-tuning even though the
model is fine-tuned on the same training data. Although we acknowledge
several attempts to train similar systems from scratch in [Ren et al. (2020);
Ma et al.| (2021)); |Chen et al. (2021)), we argue that fine-tuning our pre-trained
offline translation models in online mode can further improve the BLEU/AL
trade-off, while keeping an affordable computational budget. In summary, the
objective of this section is to answer the following questions:

e Is fine-tuning better than using directly the pre-trained offline model?

e If yes, which fine-tuning approach is most beneficial?

8.4.1 Fine-tuned online model

In this experiment, we take the pre-trained offline model and fine-tune it on
the same training data in an online mode for several epochs more. Due to
our constraint computational capacity, sentences longer than 15 seconds are
removed from the training set. This corresponds to about 15% of training data
removal. We simulate the online (wait-k) training fashion by gradually feeding
the model a chunk of £ frames at the very first step, and at each step after this,
a chunk of s frames is fed into the model. As regards the encoding strategy, we
implement our proposed overlap-and-compensate strategy. In detail, at each
step t, the encoder has access to the current chunk of frames and several past
frames (overlap_size = s/2) for calculating the partial speech representation
hy. This partial speech representation is then concatenated with a memory
bank of all the previous speech representations that encodes the whole history
of the utterance up to step t: H; = concat(H;_1, hy). This memory bank H; is
then fed to the decoder along with the decoder’s previous hidden states, and
the previous target token in order for the decoder to recalculate the attention
and try to emit at maximum N target tokens of step ¢. In this work, we fine-
tune our models in the teacher-forcing mode and target tokens are characters
(i.e, the previous ground-truth character is fed to the decoder at each step t).
We optimize the model based on the accuracy of the hypothesis translation
of the whole sequence.

8.4.2 Experiments and results

Regarding the pre-trained models, we fine-tune both the char En—De and
En—Pt model presented earlier in this chapter. The following are details of
our experiments and the corresponding results.
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Figure 8.9: ULSTM Overlap-and-compensate used by pre-trained of-
fline model and by different fine-tuned (FT) models, where
(k, s, N) are predefined (FTk100s10N3 and FTk200s20N1) or
randomly set (FTRand).

8.4.2.1 Fine-tuned models versus pre-trained offline model

We first present our experiments for the En—De language pair, which is our
main focus in this work. After that, the experiments for the En— Pt language
pair are presented as to reaffirm the effectiveness of our proposed method.
En—De language pair: for fine-tuning the pre-trained model of this lan-
guage pair, we take the best checkpoint of the pre-trained model, and inves-
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tigate several fine-tuning scenarios where: (1) the combination of (k,s, N) is
predefined or (2) randomly chosen (k = [100,200],s = [10,20], N = [1,2,3])
at each training batch. During inference time, (k, s, V) are fixed for the whole
test set, with k£ = [100,200], s = [10,20], N = [1, 2]. Each point on Figure
presents the result of each (k, s, N) combination averaged on the whole test
set.

We can observe in Figure that, on both MuST-C tst-HE and tst-
COMMON;, all fine-tuned models outperform the pre-trained offline model,
especially in low latency regimes (< 2s). Moreover, we observe that fine-tuned
model with the predefined (k,s, N) = (100, 10, 3) (FTk100s10N3) is slightly
worse than the model fine-tuned with (k, s, N) = (200, 20, 1) (FTk200s20N1).
However, significant differences between FTk200s20N1 and FTRand cannot
be observed. This agrees with Elbayad et al. (2020b) on saying that setting
wait-k parameters (k,s, N) (or only k in their case) randomly during train-
ing is beneficial as it frees us from carefully tuning a large possible (k, s, N)
collection, while still generates reasonable BLEU/AL trade-off.
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Figure 8.10: Comparing En—Pt char models with BLSTM/ULSTM
Overlap encoding strategies/ULSTM Fine-tuned, evaluated
on MuST-C tst-COMMON.

En— Pt language pair: we follow the same procedure for fine-tuning our
char En—Pt model, except that we only experiment with fine-tuning the
model on the randomly set (k, s, N) combinations. The results shown in Fig-
ure confirm that fine-tuning (the blue curve) is beneficial especially in
low-latency regimes.

Online training cost: we highlight that, even with long sentences filtered
out from the training data, it is still immensely expensive for training our
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char En—De model in online mode. In our constraint computational capacity
(1 Nvidia Tesla V100 SXM2 32G GPU), the training takes about 60h for 1
epoch. When comparing with training the same model in offline mode which
takes about 15h for 1 epoch, and in total 19 epochs for acquiring the best
checkpoint, we believe that this cost needs to be taken seriously, and that
fine-tuning the pre-trained offline model in online mode might be a reasonable
solution for reducing our development cost.

8.4.2.2 Fine-tuning scenarios

We have just observed that fine-tuning the pre-trained offline model with
(k,s, N) randomly chosen is beneficial. With that in mind, in this subsection,
we investigate several fine-tuning (the char En—De model) scenarios where
(k,s, N) are randomly chosen during training, but (1) either the encoder or
the decoder is frozen, or (2) we fine-tune an intermediate pre-trained model
rather than from the best checkpoint.
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Figure 8.11: Different fine-tuning scenarios, where the best check-
point of the pre-trained model is chosen for fine-tuning
(FTRand) and the encoder or decoder part is frozen
(FTRandFreezeEnc or FTRandFreezeDec). FTRandInter-
mediate stands for fine-tuning an intermediate checkpoint.

We can see in Figure that it is harmful when freezing either the
encoder or the decoder part of the pre-trained model, although it takes much
less time to fine-tune a model in such cases (about 44h and 35h for 1 epoch if
the encoder or the decoder is frozen, respectively). Moreover, the maturity of
the pre-trained model seems to affect the performance of the fine-tuned one.
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Figure illustrates that fine-tuning the intermediate model (checkpoint 12-
th instead of checkpoint 19-th (the best checkpoint)) significantly decreases
the performance of the system.
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Figure 8.12: Impact of overlap_size. Filled circle points represent the
settings where overlap_size > 4 and the length of the speech
encoder’s output h; = 2, Vt.

8.5 Impact of overlap_size

Earlier in this chapter, we presented our overlap-and-compensate encoding ap-
proach that overlaps half the number of new frames at each step (overlap_size =
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s/2). In this section, we shall carefully consider the impact of overlap_size
on the performance of the online translation system. In order to do this, we
evaluate the FTRand char En—De model, which yields the best BLEU/AL
trade-off of this language pair so far, with a fixed (k, N) = (200,1) combi-
nation, while we let s vary from 8 to 13 and the overlap_size = [1,2, ..., s]
during inference time.

We can observe notable differences from Figure in terms of AL
between overlap_size = 4 and overlap_size = 5. The system has the same
performance on either sides, when overlap_size < 4 or overlap_size > 4.
Similarly, the same BLEU can be found in Figure but only when
overlap_size < 4, whereas great leaps happen when overlap_size > 4. How-
ever, some drops are also noticeable (filled circle points in Figure [8.12(b)))
on this side (overlap_size > 4). We suspect that this happens because the
lengths of the output representations of the VGG blocks are directly affected
by a rounding operation conducted at each block. In detail, at each encod-
ing step ¢, the encoder processes (s + overlap_size) speech frames. After 2
VGG blocks, the length of the output representation is len(VGG_output) =
round(round((s + overlap_size)/2)/2). We recall that in our overlap-and-
compensate encoding approach, the last positions of the VGG_output are dis-
carded: len_discard = round(round(overlap_size/2)/2). Therefore, the final
representation of step ¢ would have the length: len(h;) = len(VGG_output) —
len_discard. Figure shows that all drops in BLEU are correspond-
ing to len(h;) = 2. This indicates that when working with a speech encoder
that contains CNN layers, which is a fairly common practice, one should pay
attention at the way input speech is read and processed (s and overlap_size).

8.6 Conclusion

In this chapter, a simple yet efficient online decoding strategy, which allows
pre-trained end-to-end offline AST models to decode in online mode, is pre-
sented. This strategy is inspired by wait-k decoding policy proposed for text-
to-text translation, but allows the system to read more than one speech frame
in order to generate more than one output token at each step. We conduct an
empirical evaluation on models trained for 2 different language pairs En—De
and En—Pt, with either characters or BPEs, whose results show that this
strategy allows us to control the whole range of latency regimes. Moreover,
it can lead to decent BLEU/AL trade-offs in a latency regime of 2 seconds,
and our best settings lead to competitive results in comparison with a strong
cascade baseline, without re-training the models in online mode.

Secondly, we also present in this chapter our investigation on how to encode
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efficiently the continuous speech flow. Our experiments show that ULSTM
speech encoders outperform BLSTM speech encoders in terms of both infer-
ence speed and BLEU/AL trade-off when using the same encoding strategy,
which re-encodes from the beginning of the source sequence every time new
source frames arrive. Moreover, inspired by this finding, we propose a new
encoding strategy called ULSTM overlap-and-compensate which is shown to
further improve inference speed and performance of ULSTM speech encoder.

Thirdly, this chapter also presents the impact of segmentation on the
BLEU/AL trade-off of the ULSTM overlap-and-compensate strategy. We ob-
serve through experiments that this specific encoding method benefits most
strongly when using fixed interval boundaries segmentation.

In addition, we propose in this chapter to fine-tune the pre-trained of-
fline model in a training mode more adapted to online translation. Particu-
larly, our experimental results indicate that this approach can further improve
BLEU/AL trade-off of the online translation system while keeping a low de-
velopment budget.

Finally, this chapter also highlights the crucial impact of the overlap_size
hyperparameter on the performance of the online translation system which
utilizes specifically our overlap-and-compensate encoding strategy.



Conclusion

This thesis is centered on exploring neural methods for end-to-end speech
translation, specifically focusing on two types of translation systems: (1) of-
fline speech translation and (2) online speech translation.

As regards offline speech translation, we have explored different end-to-
end architectures, different data augmentation techniques and different tar-
get granularities. Furthermore, we have compared the performance of self-
supervised learning from speech representations, particularly wav2vec and
wav2vec2.0 features, with the conventional speech representations, for exam-
ple, Mel filter-bank and MFCC features, when applied to the speech transla-
tion task.

As for online speech translation, we have adapted wait-k policy for online
speech translation, and have proposed a new ULSTM overlap-and-compensate
encoding strategy. These two methods are combined together and evaluated
firstly on pre-trained offline end-to-end speech translation models leveraged in
online mode. Moreover, we have proposed to fine-tune these models in online
mode to further boost the performance of the online translation systems. In
addition, we have also investigated other aspects of online speech translation,
for instance, the impact of input speech segmentation, the impact of output
granularity, and different fine-tuning scenarios.

This thesis shall be concluded with a summary of our contributions and a
discussion about our perspective on the future work.

Summary

e Chapter[6} Offline Neural Speech Translation. Our experiments on two
language pairs En—De and En—Pt show that LSTM-based encoder-
decoder with attention architecture is the most suitable for our settings.
This model consists of a speech encoder, which stacks two VGG-like
CNN blocks before five layers of BLSTM, and a decoder of two LSTM
layers. We exploit Bahdanau’s attention mechanism to bridge the en-
coder and the decoder. This model is trained on different combinations
of speech translation corpora, which significantly helps improve the per-
formance of the translation system in comparison with individual corpus.
Furthermore, our experimental results on both language pairs are in fa-
vor of using characters as output tokens rather than using BPE units.
Finally, we observe that ensembling is remarkably beneficial, while fine-
tuning the pre-trained model, which had been trained on the combina-
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tion of different corpora, on the target corpus has limited or no impact
on the performance of the system.

Chapter|[7; Self-supervised Learning Speech Representation. We inves-
tigate the impact of self-supervised learning from speech on end-to-end
AST performance. Particularly, we compare speech features extracted
from a pre-trained English wav2vec model, a contrastive predictive cod-
ing model pre-trained from unlabeled speech, with filter-banks features
on the AST downstream task whose source language is English. Our
experimental results show that self-supervised learning features signifi-
cantly outperform filter-bank features in low and medium-resource set-
tings, when the amount of training data is smaller than 100 hours. Fur-
thermore, we observe that fine-tuning this model on the AST training
data (in an unsupervised manner) further improves the performance. In
addition, in higher resource settings, we see that ensembling AST models
trained with filter-bank and wav2vec features leads to near state-of-the-
art models without using any ASR pre-training. Our analyses indicate
that self-supervised representations show better phone discrimination,
source-target alignments and speaker robustness.

Besides, we train seven wav2vec2.0 models of different model sizes on
different combinations of training data of unlabelled French speech. In
our open-source and reproducible framework for assessing self-supervised
learning from French speech data named LeBenchmark, we show that, on
a multilingual AST setting, features extracted from these self-supervised
learning models marginally outperform the baselines using filter-bank
features, and that fine-tuning self-supervised learning models on the
task-specific data in a supervised manner can lead to great improve-
ments.

Chapter Online Neural Speech Translation. We adapt wait-k de-
coding policy for speech translation and show that this policy allows to
leverage pre-trained offline models, either character-based or BPE-based,
of two different language pairs En—De and En—Pt, in online decoding
mode. Our experimental results show that this strategy can control
the whole range of latency regimes, and can achieve decent BLEU /AL
trade-offs in a latency regime of 2 seconds. Furthermore, our best set-
tings are comparable with a strong cascade baseline, without re-training
the models in online mode.

We also advocate for replacing BLSTM-based by ULSTM-based speech
encoders when our experimental results indicate that the latter out-
performs the former in terms of both inference speed and BLEU/AL
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trade-off when using the same encoding strategy, which re-encodes from
the beginning of the source sequence every time new source frames are
read. We go further to propose a new encoding strategy called UL-
STM overlap-and-compensate which is shown to further improve infer-
ence speed and performance of ULSTM speech encoders. Furthermore,
our investigation on the impact of segmentation on the BLEU /AL trade-
off of the ULSTM overlap-and-compensate strategy shows that this spe-
cific encoding method benefits most strongly when using fixed interval
boundaries segmentation.

Finally, we propose to fine-tune the pre-trained offline model in a train-
ing more adapted to online translation. Particularly, our results indicate
that this approach can further improve BLEU/AL trade-off of the online
translation system while keeping a low development budget.

Future work

In this thesis, we have presented our attempt to answer our research ques-
tions, which also evoke other interesting scientific questions. We discuss some
future perspectives and open questions based on the work of this thesis as the
following:

e Offline Neural Speech Translation. So far in this thesis, we have pre-
sented AST results that are in favor of using an LSTM-based architec-
ture instead of the Transformer-based counterpart, which is dominantly
used in MT applications. This should be taken with caution because we
could not fully explore Transformer-based approaches due to the time
constraints imposed by the two evaluation campaigns. However, we ac-
knowledge that gathered experimental evidence has induced mixed con-
clusions about Transformer-based architectures applied to the AST task.
For example, Pino et al. (2019)) show that their VGGTRANSFORMER
AST model significantly outperforms the VGGLSTM one, but possess-
ing substantially more parameters. Similarly, both |Potapczyk and Przy-
bysz (2020) and Bahar et al.| (2020), whose results rank higher than ours
in the end-to-end offline AST track of the IWSLT 2020, use different
variants of Transformer architectures for their primary AST systems.
However, the differences in the experimental conditions (in terms of pa-
rameter budget, amount of training data, etc.) do not allow a direct
comparison between LSTM-based and Transformer-based architectures.
Di Gangi et al.| (2019bjc) conduct a deliberate comparison between
LSTM-based and Transformer-based AST models under fairer experi-
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mental conditions. Their conclusion is that even though Transformer-
based AST models can be trained faster with the same computational
budget, it needs additional treatments, for instance, additional 2D CNN
layers and distance penalty, in order to yield comparable performance
with the LSTM-based architecture. For these reasons, we are interested
in conducting a more careful investigation of Transformer architectures
for end-to-end AST in the future.

Earlier in this thesis, we have presented that we can leverage a larger
amount of unlabelled speech data to improve the performance of the
AST task by using pre-trained SSL models. In NMT, non-parallel text
data can also be used to pre-train contextualized language models such
as BART (Lewis et al.| (2019)) and mBART (Liu et al.| (2020))) which
can be used to improve the performance of the NMT system. |Le et al.
(2021) use a pre-trained mBART model in order to initialize the de-
coders of their AST models whose speech encoders are initialized by
pre-trained ASR models. They show promising results when fine-tuning
these backbones with some adapter layers (Bapna et al. (2019)) on their
multilingual AST data. We also find this idea of using pre-trained con-
textualized language models in the AST task appealing and would like
to include it in our future work.

Another interesting future direction on that we want to embark is adapt-
ing the k-nearest-neighbor machine translation (kNN-MT) proposed by
Khandelwal et al| (2021)) to the speech translation task. This method
consists of using a nearest retrieval mechanism to aid the decoder of a
pre-trained MT model in making a better prediction about the target
word at a specific step. More specifically, it relies on interpolating the
target token softmax distribution from the pre-trained M'T model with
a multinomial outputted by the nearest neighbor search over examples
cached in a “datastore”. This cache is built over translation contexts (i.e,
the complete source and prefix target tokens) and is indexed by hidden
states calculated by the pre-trained MT model.

Last but not least, most works in the literature make a claim that one of
the reasons they advocate for end-to-end AST approaches instead of the
cascaded ones is that they are cheaper in terms of development cost tak-
ing into account that we need to optimize only one objective. However,
we have been seeing that it is not easy for end-to-end models to reach
the performance of cascaded models if not for using additional methods
such as data augmentation and pre-training, which also come with a
cost. For fairer comparisons between these two types of speech trans-
lation systems, we believe that all costs should be considered and how
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to make these costs comparable is also an interesting scientific question
that we are eager to answer.

Self-supervised Learning Speech Representation. So far in this thesis,
we have shown promising results when using pre-trained SSL models as
features extractors for the AST task. If we view a pre-trained SSL model
as an additional component of the speech encoder, we can say that its
parameters are frozen during the training of the whole model. However,
we cannot think of any particular reason that prevents us from training
this component with the AST model. Note that this is somewhat similar
to the way Baevski et al.| (2020b) fine-tune their wav2vec2.0 model on the
ASR downstream task, stacking a randomly initialized output layer on
top of the wav2vec2.0 model for predicting target tokens. We can expand
this idea to the AST task to exploit a wide collection of decoders and
additional adapter layers. For example, we can use a wav2vec2.0 model
pre-trained on unlabelled source speech to initialize a speech encoder and
a BART model pre-trained on the target text to initialize the decoder
of an end-to-end AST model, and train this model on the parallel AST
dataset. We acknowledge the similar idea in very recent works such as
Gallego et al.| (2021); Li et al.| (2021) and Babu et al. (2021]).

Another interesting research direction that we want to discover is learn-
ing a shared latent space of both acoustic and textual representations.
This idea is similar to those of |Agrawal et al| (2020) and |[Han et al.
(2021). By projecting textual representations onto a shared space with
speech representations, we can guide the speech representations to be
closer to the textual ones. Intuitively, this helps us leverage both unla-
belled speech data and monolingual text data or massive MT corpora,
which are more abundantly available than the parallel data of speech
paired with the corresponding translation text.

Online Neural Speech Translation. One of our short-term plans is to ex-
plain the surprising results shown Chapter[§| which regard to the inferior
performance of the oracle word boundaries segmentation in comparison
with the fixed interval one. Even though more deliberate experiments
need to be conducted in order to explain this, our hypothesis is that our
translation model heavily under-generates target tokens because a word
segment can be arbitrarily long. This subsequently lengthens the delay
incurred by the system when translating the same sentence. For this
reason, a more dynamic way of using the write parameter N might need
to be investigated.

We are also interested in developing more dynamic online speech trans-
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lation systems which, instead of functioning on fixed intervals of speech
frames, can detect word boundaries and make READ/WRITE decisions
based on the seen context. We have seen that CTC can be exploited for
word boundaries detection in Ren et al. (2020) whose similar idea can
be found in |Zeng et al| (2021)). Also attempting to detect word bound-
aries automatically, Wang et al. (2020c)) train a separate Scout Network
which performs word boundary detection. This information is then used
to guide the streaming ASR system. We would like to adapt this idea
to the online speech translation task.

In terms of latency metrics, as pointed out in Ma et al. (2021)), most
currently used latency metrics fail to represent the time spent on gener-
ating the translation when analyzing the latency. This weak assumption
allows a system to have good latency quality trade-offs, while being inap-
plicable in real-time scenarios. Furthermore, although the computation-
aware version of AL considers the real-time needed to generate each
output token, it does not allow to directly compare different systems
running on different hardware configurations. Therefore, designing a
new latency metric which informatively reflexes the real time delays
incurred by online speech translation systems and, at the same time,
taking into account the differences in terms of hardware configurations
of these systems is well considered for our future work.



French translation



ANNEXE A

Introduction (frangaise)

En passant de la traduction automatique texte-texte a la traduction automa-
tique parole-texte, on se rapproche un peu plus du réve séculaire de 'humanité,
qui est de supprimer la barriere de la langue entre les personnes de commu-
nautés différentes.

Les efforts de traduction automatique de la parole remontent aux années
1980, lorsque NEC a réalisé la premiere preuve de concept lors de 'I'TU Tele-
com World de 1983 (Nakamura| (2009)) et ont continué a prospérer dans les
années 1990. Pendant des décennies, le domaine de la traduction vocale (de
la parole au texte en particulier) a été le témoin de la prédominance des
approches complexes en cascade a deux étapes, qui couplent un systeme de
reconnaissance automatique de la parole suivi d'un systeme de traduction au-
tomatique du texte au texte. Pour cette raison, on dit généralement que ce
domaine est beaucoup plus difficile que la reconnaissance vocale et la traduc-
tion de texte seules, car il doit résoudre des problemes provenant de ces deux
fronts, qui, a leur tour, sont loin d’étre résolus.

A partir de 2016, des approches neuronales de bout en bout, qui cher-
chaient a remédier aux lacunes des méthodes en cascade, ont émergé et ont
directement remis en question la domination des approches en cascade, vieille
de plusieurs décennies. Les pionniers de cette branche de la recherche (Duong
et al| (2016); Bérard et al.| (2016)); Weiss et al| (2017); Bérard et al.| (2018))
soutiennent que les modeles en cascade a deux étages sont sujets a la prop-
agation d’erreurs puisque les deux principaux composants du systeme sont
entrainés pour optimiser deux fonctions objectives distinctes. Par conséquent,
ils proposent d’entrainer des systemes de traduction de la parole unique qui
prédisent directement la traduction a partir de la séquence d’entrée, en opti-
misant une fonction objectif unique. Cette facon de faire a progressivement
suscité l'intérét de la communauté, grace a l'efficacité prouvée des modeles
de séquence a séquence pour la traduction automatique, et les taches de re-
connaissance de la parole (Chorowski et al.| (2015); Chan et al.| (2016); Zhang
et al.| (2017)); |Chorowski and Jaitly (2016)), et aux efforts pour construire des
corpus de traduction de la parole (c’est-a-dire des données paralleles de parole
enregistrée couplées a du texte de traduction) qui permettent d’entrainer des
modeles de traduction de la parole de bout en bout sans utiliser la transcrip-
tion source. Depuis 2016, ce domaine de recherche connait un essor vigoureux.
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Cependant, en raison des énormes défis imposés par cette tache, il est encore
loin d’étre résolu Sperber and Paulik| (2020).

Les modeles de traduction vocale de bout en bout susmentionnés, qui ont
I’avantage de disposer de la séquence d’entrée complete pour conditionner la
génération de la traduction de sortie, sont appelés traduction vocale hors ligne.
On dit qu’elle est moins difficile que la traduction vocale en ligne (parfois ap-
pelée “simultanée” de bout en bout (Ren et al. (2020); Ma et al.| (2020b)); [Han
et al. (2020); Ma et al| (2021])), qui doit générer une hypothese de sortie de
maniere incrémentielle a partir de la parole partielle d’entrée. Cette branche
de recherche plutot naissante attire de plus en plus 'attention de la com-
munauté grace aux résultats préliminaires mais encourageants présentés lors
de campagnes d’évaluation telles que les IWSLT 2020 et 2021. Cependant,
le probleme de la traduction en ligne de bout en bout est loin d’étre résolu,
et les tentatives d’amélioration du statu quo dans ce domaine sont donc les
bienvenues.

Avant tout, cette these est centrée sur l'exploration des méthodes neu-
ronales pour la traduction de la parole de bout en bout. Il s’agit d'un large
éventail d’aspects, tels que la recherche de modeles de bout en bout efficaces,
la maniere de gérer la rareté des données d’entrainement a la traduction de
la parole, la maniere de segmenter efficacement 'entrée de la parole, le type
d’unités token cibles le plus avantageux, etc. Il s’agit également de répondre a
une question de recherche sur la maniere de représenter efficacement les don-
nées d’entrée de la parole, ce qui constitue le second objectif de cette these.
En particulier, une étude de la nouvelle proposition d’apprentissage auto-
supervisé a partir de représentations de la parole (Schneider et al. (2019al);
Baevski et al.| (2020b))) est menée, ce qui permettra de remplacer les approches
conventionnelles de représentation de la parole, telles que les représentations
Mel fitler-bank et les représentations MFCC, etc. par ces représentations
d’apprentissage auto-supervisé.

Enfin, une autre contribution de cette these concerne la traduction vocale
en ligne. En particulier, nous visons a adapter la stratégie wait-k (Ma et al.
(2019)), une stratégie de décodage proposée pour la traduction de texte a texte
en ligne, a la traduction de parole en ligne. Nous couplons cette stratégie de
décodage adaptée avec une nouvelle stratégie d’encodage ULSTM overlap-
and-compensate afin, d’une part, d’exploiter en mode en ligne des modeles de
traduction vocale de bout en bout hors ligne pré-entrainés et, d’autre part,
d’affiner ces modeles en mode en ligne pour améliorer encore les performances
des systemes de traduction en ligne. D’autres aspects différents de la traduc-
tion vocale en ligne, par exemple, I'impact de la segmentation de la parole
en entrée et I'impact de la granularité en sortie, sont également étudiés dans
cette these.
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Apercu des contributions

Cette these étudie le probleme de la modélisation des systemes neuronaux de
traduction de la parole, en se concentrant sur les aspects suivants:

e Modélisation de bout en bout pour la traduction vocale hors ligne: nous
nous concentrons sur ’exploration de différentes architectures de bout
en bout pour la traduction vocale, ainsi que de différents types de jetons
cibles. Nous soutiendrons, par le biais d’expériences, que l’architecture
d’encodeur-décodeur attentionnel basée sur LSTM est la plus avan-
tageuse, et que les modeles basés sur les caracteres sont plus performants
que leurs homologues basés sur BPE dans nos parametres. Cette quéte
de modeles de bout en bout pour la traduction vocale hors ligne donne
lieu a deux publications pour les campagnes d’évaluation IWSLT 2019
et IWSLT 2020.

e Représentations de la parole pour la traduction: nous comparons les
approches conventionnelles de représentation de la parole, telles que
les coefficients en bancs de filtres ou MFCC, avec un nouveau type
de représentation de la parole basé sur 'apprentissage auto-supervisé.
Nous montrons que les représentations wav2vec, qui sont basées sur le
codage prédictif contrastif (CPC), surpassent largement les représenta-
tions conventionnelles dans des conditions de faibles ressources ou les
données d’entrainement a la traduction de la parole ne sont pas suff-
isamment disponibles. Cette étude de I'apprentissage auto-supervisé a
partir des représentations de la parole donne lieu a plusieurs publications
dans des conférences internationales prestigieuses telles que Interspeech
2020, Interspeech 2021 et NeurIPS 2021.

e Systeme de traduction en ligne de bout en bout: nous nous concentrons
sur ’équilibre entre la qualité de la traduction et la latence des systemes
de traduction de bout en bout. Nous proposons une stratégie de dé-
codage de type wait-k, qui s’avere suffisante pour exploiter des modeles
hors ligne pré-entrainés de bout en bout pour la traduction de la parole
en ligne. Afin d’améliorer encore les performances du systeme de tra-
duction en ligne, nous proposons également une stratégie d’encodage, a
savoir le ULSTM overlap-and-compensate, qui permet aux encodeurs de
parole de type VGG avec des couches ULSTM de encoder plus efficace-
ment ’entrée de parole partielle. En outre, nous préconisons également
un réglage fin des modeles hors ligne dans le cadre d’un entrainement
plus adaptée a la traduction en ligne, et montrons que cela peut con-
tribuer a améliorer les performances du systeme de traduction en ligne
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tout en conservant un cout de développement raisonnable. Ces travaux
ont donné lieu a 2 publications dans 2 conférences internationales de
haut niveau, dont 'TCASSP 2021 et I'Interspeech 2021.

Plan de la these

Cette these est organisée en deux parties principales. Dans la premiere partie
de la these, nous discutons des connaissances de base qui sont étroitement
liées au travail effectué dans cette these. Il s’agit de:

e Chapitre[l} Traduction automatique neuronale. Dans ce chapitre, nous
présentons un apercu des anciennes méthodes qui étaient dominantes
avant I’ere de la traduction automatique neuronale de bout en bout, par
exemple, la traduction automatique statistique basée sur les mots et les
phrases. Nous présenterons ensuite 1’état de 1’art des méthodes neu-
ronales, en particulier la traduction automatique de bout en bout. En
outre, ce chapitre décrit également les métriques couramment utilisées
pour évaluer un systeme de traduction automatique.

e Chapitre[2; Traduction vocale neuronale. Ce chapitre est consacré a la
présentation de I’état de ’art de la traduction vocale neuronale de bout
en bout. Avant cela, nous abordons brievement les systemes en cascade,
qui restent des bases solides que les modeles de bout en bout doivent
dépasser. Ensuite, nous mettons l'accent sur certaines architectures de
bout en bout importantes, largement utilisées dans la traduction vocale,
ainsi que sur les défis et leurs solutions correspondantes. Ce chapitre se
termine par un apercu des corpus de traduction de la parole.

e Chapitre [3} Traduction automatique neuronale en ligne. Ce chapitre
vise a présenter 1’état de 'art de la traduction automatique neuronale
en ligne. Dans ce chapitre, nous nous concentrons sur la discussion des
différentes stratégies de décodage en ligne de nature déterministe et dy-
namique. En outre, nous mentionnons également comment un systeme
de traduction automatique en ligne peut étre évalué automatiquement.

e Chapitre 4 Traduction vocale neuronale en ligne. Dans ce chapitre,
nous discutons brievement des premieres tentatives de systemes de tra-
duction vocale en ligne, avant de donner un apercu des modeles de tra-
duction vocale en ligne en cascade. Ce chapitre sera suivi d'une discus-
sion sur les modeles de bout en bout pour la traduction vocale en ligne,
qui sont étroitement liés a I'objectif de cette these.
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e Chapitre Apprentissage auto-supervisé de la représentation de la
parole. Dans ce chapitre, nous donnons d’abord un apercu des ap-
proches conventionnelles de représentation des données de parole. En-
suite, une discussion détaillée centrée sur les méthodes d’apprentissage
auto-supervisé de la parole, qui sont prometteuses pour remplacer les
approches conventionnelles de représentation de la parole, sera donnée.

La deuxieme partie de la these vise a détailler les contributions scientifiques
de cette these, notamment dans les aspects suivants:

e Chapitre [6} Traduction vocale neuronale hors ligne. Nous explorons
différentes architectures de bout en bout pour la traduction automa-
tique de la parole, La discussion sera confinée dans le contexte de notre
participation aux campagnes d’évaluation IWSLT 2019 et IWSLT 2020,
ou les traductions automatiques générées par ces modeles de bout en
bout sont évaluées et comparées avec les méthodes d’autres groupes de
recherche.

e Chapitre 7t Apprentissage auto-supervisé de la représentation de la
parole. L’objectif de ce chapitre est de discuter de nos contributions
a 'utilisation du modele d’apprentissage auto-supervisé pré-entrainé en
anglais pour générer des caractéristiques de parole pour la tache de tra-
duction de la parole, ainsi que de nos efforts pour entrainer nos propres
modeles SSL a partir de la parole francaise. Dans ce chapitre, nous
montrons des résultats qui soutiennent 1'utilisation de représentations
de la parole par apprentissage auto-supervisé au lieu de représentations
conventionnelles.

e Chapitre (8 Traduction vocale neuronale en ligne. Nous discutons dans
ce chapitre de nos contributions en termes d’approches de décodage et
d’encodage pour la traduction vocale en ligne, qui utilisent efficacement
des modeles de traduction vocale hors ligne pré-entrainés dans la tache
de traduction en ligne. Nous montrons également dans ce chapitre com-
ment ces modeles pré-entrainés peuvent étre affinés dans un entraine-
ment plus adaptée a la traduction en ligne afin d’améliorer encore les
performances du systeme de traduction en ligne.

Nous concluons cette these dans la Conclusion, ot nous résumons nos
contributions ainsi que notre perspective sur les travaux futurs.
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Résumé des Chapitres

B.1 Chapitre 1: Traduction automatique neuronale

Dans ce chapitre, nous présentons brievement les méthodes traditionnelles de
traduction automatique, notamment la traduction automatique a base de re-
gles, qui repose essentiellement sur des regles linguistiques, et la traduction
automatique statistique, qui exploite des méthodes statistiques sans se soucier
des regles linguistiques. La traduction automatique statistique, qui se com-
pose d'un modele de langue et d'un modele de traduction, a été I’état de ’art
dans le domaine pendant des décennies, jusqu’a I’émergence de la traduction
automatique neuronale, qui est présentée dans un volume plus important de ce
chapitre. La méthode dominante dans la traduction automatique neuronale
est la modélisation de séquence a séquence de bout en bout. L’exemple le
plus représentatif de ce type de modele est constitué d’un encodeur et d’un
décodeur, qui sont reliés par un mécanisme d’attention. En plus de passer
en revue plusieurs extensions de réseau pour la traduction automatique neu-
ronale, par exemple, les encodeurs & Long Short-Term Memory (LSTM) et
I’architecture Transformer, nous passons également en revue différentes ap-
proches visant a améliorer la qualité de la traduction automatique, par exem-
ple, I'utilisation de la beam search, de I’ensemble et des unités de sous-mots.
La qualité de la traduction est le plus souvent mesurée par le BLEU, une
métrique automatique, qui est présentée dans ce chapitre avec le METEOR,
le Word Error Rate (WER) et le Translation Error Rate (TER).

B.2 Chapitre 2: Traduction vocale neuronale

Dans ce chapitre, nous passons en revue les méthodes en cascade qui ont con-
stitué pendant longtemps ’état de ’art en matiere de traduction automatique
de la parole. Cependant, ces méthodes, qui couplent un systeme de reconnais-
sance automatique de la parole avant un systeme de traduction automatique,
attirent moins ’attention récemment en raison de ’apparition de la traduction
neuronale de la parole de bout en bout. Cette méthode nouvellement proposée
est plus attrayante car elle promet de remédier aux défauts des méthodes en
cascade, par exemple, le probleme de la propagation des erreurs et le cout
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de développement élevé. Cependant, les modeles de bout en bout nécessi-
tent d’étre entrainés sur une grande quantité de données de traduction de la
parole (c’est-a-dire des données paralleles de la parole alignées sur le texte
de traduction correspondant), ce qui n’est pas facile a satisfaire dans la plu-
part des cas. Parallelement a I'introduction de nouveaux corpus de traduction
vocale, diverses méthodes, dont 'augmentation des données, 'apprentissage
multi-taches et la pré-entrainement, ont été introduites pour atténuer ce prob-
leme de disponibilité des données. Nous consacrons une grande partie de ce
chapitre a 'examen de différents modeles de bout en bout pour la traduction
automatique de la parole, dont la plupart sont basés sur le modele Listen, At-
tend, and Spell (LAS). Le modele LAS est un modele de séquence a séquence
similaire a ceux utilisés en traduction automatique neuronale (de text), mais
les encodeurs de la parole sont adaptés pour mieux traiter les représentations
de la parole en entrée.

B.3 Chapitre 3: Traduction automatique neuronale
en ligne

Dans ce chapitre, nous présentons 1’état de ’art de la traduction automatique
neuronale en ligne, qui se distingue de la tache de traduction hors ligne qui
a avantage de disposer de la séquence d’entrée complete pour conditionner
la génération des tokens de sortie. La traduction automatique en ligne, en
revanche, doit commencer a générer des hypotheses de sortie partielles sur
la base d’une entrée partielle afin d’équilibrer le compromis entre la qual-
ité de la traduction et la latence. Nous nous concentrons sur la discussion
des différentes stratégies de décodage en ligne de nature déterministe et dy-
namique. L’approche dominante des stratégies déterministes est la stratégie
wait-k, qui est un cadre préfixe a préfixe consistant en un agent qui lit k to-
kens source a la premieére étape, puis alterne les opérations WRITE/READ
uniques jusqu’a ce que tous les tokens source soient lus. En revanche, les
stratégies dynamiques visent a entrainer l'agent a effectuer des actions de
READ/WRITE plus dynamiques ou a apprendre une attention plus monotone
au lieu de l'attention douce traditionnelle qui nécessite 'acces a la séquence
source complete. Outre la qualité de la traduction, la traduction en ligne est
également évaluée en fonction de la latence, qui est le plus souvent mesurée par
I’Average Lagging (la latence moyenne). D’autres métriques automatiques de
mesure de la latence présentées dans ce chapitre incluent I’Average Proportion
(proportion moyenne) et la Differentiable Average Lagging (latence moyenne
différentiable).
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B.4 Chapitre 4: Traduction vocale neuronale en
ligne

Dans ce chapitre, nous présentons 1’état de I'art de la traduction vocale en
ligne. La plupart des efforts déployés jusqu’a présent dans ce domaine se con-
centrent sur la construction de systemes en cascade, qui exploitent des mod-
ules de traduction simultanée de texte a texte pour traduire la transcription
partielle produite par un module ASR en ligne. En revanche, les tentatives
d’exploitation de modeles de bout en bout pour traduire directement et simul-
tanément la parole source en texte cible sont apparues tres récemment, prin-
cipalement en adaptant a la tache de la parole le modele wait-k proposé pour
la traduction texte-texte. Les premiers modeles de bout en bout effectuent
des opérations de READ/WRITE de maniére déterministe (c’est-a-dire qu’ils
prennent des décisions de READ et WRITE sur des blocs d’'un nombre fixe
de trames sources), ou sont entrainés conjointement avec un module supplé-
mentaire, par exemple un segmenteur de parole ou un module de prédécision
basé sur la CTC, qui évoque des décisions de READ et WRITE dynamiques.

B.5 Chapitre 5: Apprentissage auto-supervisé de la
représentation de la parole

Nous passons en revue dans ce chapitre deux approches conventionnelles de
représentation de la parole les plus couramment utilisées, a savoir le Log Mel
Filterbank et les MFCCs. Ces méthodes utilisent sélectivement des outils
mathématiques pour transformer directement les signaux vocaux numérisés
en une représentation plus dense. Dans ce chapitre, nous nous concentrons
toutefois sur 'apprentissage auto-supervisé a partir de représentations de la
parole, qui est une approche plus récente pour I'extraction de caractéristiques
de la parole. Plus précisément, nous présentons le codage prédictif contrastif
(CPC) qui vise a apprendre des représentations utiles a partir de données non
annotées de haute dimension en prédisant le futur dans I’espace latent. Cette
approche permet d’exploiter d’énormes quantités de données non annotées
pour apprendre des représentations utiles de la parole. Ces représentations
sont ensuite utilisées dans des taches en aval, par exemple la traduction au-
tomatique de la parole, qui souffre généralement d’'un manque de données.
Les différentes variantes du CPC sont présentées dans ce chapitre, a savoir
wav2vec et deux de ses extensions, notamment vg-wav2vec, qui apprend des
représentations vectorielles quantifiées, et wav2vec2.0, qui masque la parole
brute en entrée dans ’espace latent et résout une tache contrastive définie sur
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des représentations vocales quantifiées.

B.6 Chapitre 6: Contribution - Traduction vocale
neuronale hors ligne

Dans ce chapitre, nous avons présenté notre quéte pour trouver les mod-
eles AST de bout en bout les mieux adaptés a notre condition. Une série
d’expériences, réalisées dans le cadre de notre participation a deux campagnes
d’évaluation de la traduction vocale, a savoir IWSLT 2019 et IWSLT 2020,
montre que l'architecture d’encodeur-décodeur basé sur LSTM avec atten-
tion donne de bons résultats dans nos conditions. Nous observons également,
par le biais d’expériences, que la combinaison de corpus de traduction vocale
permet d’améliorer de maniere significative les performances du systeme de
traduction. Les expériences sur les deux paires de langues En—De et En—Pt
montrent que les résultats sont en faveur de 1'utilisation de caracteres comme
jetons de sortie. De plus, 'assemblage est considérablement bénéfique, tandis
que réglage fin ne montre qu'une amélioration limitée ou nulle des perfor-
mances du systeme.

D’apres les résultats présentés, les modeles d’encodeur-décodeur avec at-
tention a base de caracteres sera systématiquement réutilisé dans nos expéri-
ences suivantes, qui seront présentées dans la suite de cette these. Cependant,
les lecteurs de cette these doivent étre avertis que, puisque ce domaine de
recherche prolifere a grande vitesse, ces résultats peuvent ne pas correspondre
a ceux plus récents d’autres groupes de recherche.

B.7 Chapitre 7: Contribution - Apprentissage auto-
supervisé de la représentation de la parole

Dans ce chapitre, nous avons présenté notre étude sur I'impact de I'apprentissage
auto-supervisé (SSL) a partir de la parole sur les performances de la traduction
automatique de la parole de bout en bout. Il s’agit, a notre connaissance, de
I'un des premiers efforts d’utilisation du SSL pour la tache AST. Plus précisé-
ment, nous utilisons un modele wav2vec anglais pré-entrainé, un modele CPC
pré-entrainé a partir de la parole non étiquetée, comme extracteur de carac-
téristiques pour une tache AST en aval qui concerne I’anglais comme langue
source. Nos résultats expérimentaux montrent que le pré-entrainement auto-
supervisé est particulierement efficace dans les contextes de ressources faibles
et moyennes, lorsque la quantité de données d’entrainement a la traduction
vocale est inférieure a 100 heures, et que réglage fin des modeles CPC sur
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les données d’entrainement AST améliore encore les performances. En outre,
dans des contextes de ressources plus élevées, nous observons par le biais
d’expériences que l'assemblage de modeles AST entrainés avec des représen-
tations de filterbanks et de CPC conduit & des modeles proches de ’état de
lart sans utiliser de pré-entrainement ASR. Nos analyses montrent que les
représentations auto-supervisées présentent une meilleure discrimination du
phoneme, des alignements source-cible et une meilleure robustesse a la vari-
abilité des orateurs, ce qui pourrait étre responsable de cette amélioration
significative par rapport au base de référence de filterbanks. Ceci pourrait
étre particulierement bénéfique dans la situation ou nous devons développer
un systeme qui traduit a partir de la parole dans une langue dont ’orthographe
est peu standardisée ou méme a partir de la parole dans une langue non écrite.

En outre, ce chapitre a également présenté nos contributions a I’entrainement
de plusieurs modeles SSL a partir de la parole francaise. En particulier, nous
entrainons 7 modeles wav2vec2.0 de différentes tailles sur différentes com-
binaisons de données d’entrainement. Ces modeles sont utilisés dans notre
cadre open-source et reproductible pour évaluer le SSL a partir de données
vocales frangaises, a savoir LeBenchmark. Nous montrons des résultats sur
un cadre AST multilingue, qui réaffirment que les représentations SSL sur-
passent marginalement les bases de référence de filterbanks, et que le réglage
fin des modeles SSL sur les données spécifiques a la tache d’une maniere su-
pervisée peut conduire a de grandes améliorations.

Enfin, nous devons préciser que méme si ce type de représentations de la
parole s’est avéré tres efficace pour la tache d’AST, dans la suite de cette these,
nous reviendrons a 'utilisation de filterbanks dans les expériences concernant
I’AST en ligne. Ceci est di a la contrainte de calcul que nous avons rencontrée
au cours du processus. L’AST en ligne s’avérera plus cotiteuse en termes de
calcul, et nous n’avons donc pas été en mesure d’appliquer les fonctionnalités
SSL a cette tache.

B.8 Chapitre 8: Contribution - Traduction vocale
neuronale en ligne

Dans ce chapitre, nous présentons une stratégie de décodage en ligne simple
mais efficace, qui permet aux modeles hors ligne AST pré-entrainés de bout en
bout de décoder en mode en ligne. Cette stratégie est inspirée de la stratégie
de décodage wait-k proposée pour la traduction de texte a texte, mais permet
au systeme de lire plus d’une trame de parole afin de générer plus d’'un jeton de
sortie a chaque étape. Nous effectuons une évaluation empirique sur des mod-
eles pre-entrainés pour 2 paires de langues différentes En—De et En—Pt, avec
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des caracteres ou des BPEs, dont les résultats montrent que cette stratégie
nous permet de controler toute la gamme des régimes de latence. De plus, elle
peut conduire a des compromis BLEU/AL décents dans un régime de latence
de 2 secondes, et nos meilleurs parametres conduisent a des résultats compéti-
tifs par rapport a une base de référence de cascade forte, sans ré-entrainer les
modeles en mode en ligne.

Deuxiemement, nous présentons également dans ce chapitre notre étude
sur la maniere d’encoder efficacement le flux de parole continu. Nos expéri-
ences montrent que les encodeurs de parole ULSTM sont plus performants que
les encodeurs de parole BLSTM en termes de vitesse d’inférence et de compro-
mis BLEU/AL lorsqu’ils utilisent la méme stratégie d’encodage, qui réencode
depuis le début de la séquence source a chaque fois que de nouvelles trames
sources arrivent. De plus, inspirés par cette découverte, nous proposons une
nouvelle stratégie d’encodage appelée ULSTM overlap-and-compensate qui
permet d’améliorer encore la vitesse d’inférence et les performances du en-
codeur vocal ULSTM.

Troisiemement, ce chapitre présente également 'impact de la segmenta-
tion de la parole sur le compromis BLEU/AL de la stratégie overlap-and-
compensate ULSTM. Nous observons, par le biais d’expériences, que cette
méthode d’encodage spécifique est plus avantageuse lorsqu’elle utilise une seg-
mentation des frontieres (de mots) a intervalle fixe.

En outre, nous proposons dans ce chapitre d’affiner le modele hors ligne
pré-entrainé dans un mode d’apprentissage plus adapté a la traduction en
ligne. En particulier, nos résultats expérimentaux indiquent que cette ap-
proche peut améliorer davantage le compromis BLEU/AL du systeme de tra-
duction en ligne tout en conservant un faible budget de développement.

Enfin, ce chapitre met en évidence I'impact crucial de I'hyperparametre
overlap_size sur les performances du systeme de traduction en ligne qui utilise
spécifiquement notre stratégie d’encodage overlap-and-compensate.



ANNEXE C

Conclusion (frangaise)

Cette these est centrée sur 'exploration des méthodes neuronales pour la
traduction vocale de bout en bout, en se concentrant spécifiquement sur deux
types de systémes de traduction : (1) la traduction vocale hors ligne et (2) la
traduction vocale en ligne.

En ce qui concerne la traduction vocale hors ligne, nous avons exploré dif-
férentes architectures de bout en bout, différentes techniques d’augmentation
des données et différentes granularités de cible. En outre, nous avons comparé
les performances de I'apprentissage auto-supervisé a partir de représentations
de la parole, en particulier les représentations wav2vec et wav2vec2.0, avec les
représentations conventionnelles de la parole, par exemple, les Mel filter-bank
et MFCCs, lorsqu’elles sont appliquées a la tache de traduction de la parole.

En ce qui concerne la traduction de la parole en ligne, nous avons adapté
la stratégie wait-k a la traduction de la parole en ligne, et nous avons proposé
une nouvelle stratégie d’encodage ULSTM overlap-and-compensate. Ces deux
méthodes sont combinées ensemble et évaluées d’abord sur des modeles de
traduction vocale hors ligne pré-entrainés de bout en bout exploités en mode
en ligne. De plus, nous avons proposé d’affiner ces modeles en mode en ligne
afin d’améliorer les performances des systemes de traduction en ligne. En
outre, nous avons également étudié d’autres aspects de la traduction vocale
en ligne, par exemple, I'impact de la segmentation de la parole en entrée,
I'impact de la granularité en sortie, et différents scénarios de réglage fin.

Cette these sera conclue par un résumé de nos contributions et une discus-
sion sur notre perspective sur le travail futur.

Sommaire

e Chapter [6; Traduction vocale neuronale hors ligne. Nos expériences
sur deux paires de langues En—De et En—Pt montrent que ’encodeur-
décodeur basé sur un LSTM avec architecture d’attention est le plus
adapté a nos parametres. Ce modele se compose d'un encodeur vocal,
qui empile deux blocs CNN de type VGG avant cing couches de BLSTM,
et d’'un décodeur composé de deux couches LSTM. Nous exploitons le
mécanisme d’attention de Bahdanau pour faire le lien entre I’encodeur
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et le décodeur. Ce modele est entrainé sur différentes combinaisons de
corpus de traduction vocale, ce qui permet d’améliorer considérablement
les performances du systeme de traduction par rapport a un corpus
individuel. De plus, nos résultats expérimentaux sur les deux paires de
langues sont en faveur de l'utilisation de caracteres comme jetons de
sortie plutot que d’utiliser des unités BPE. Enfin, nous observons que
I’assemblage est remarquablement bénéfique, tandis que le réglage fin
du modele pré-entrainé, qui avait été entrainé sur la combinaison de
différents corpus, sur le corpus cible a un impact limité ou nul sur les
performances du systeme.

Chapter Apprentissage auto-supervisé de la représentation de la
parole. Nous étudions I'impact de ’apprentissage auto-supervisé a par-
tir de la parole sur les performances de 'AST de bout en bout. En
particulier, nous comparons les présentations de la parole extraites d'un
modele wav2vec anglais pré-entrainé, un modele de codage prédictif con-
trastif pré-entrainé a partir de la parole non étiquetée, avec les présenta-
tions des bancs de filtres sur la tache AST en aval dont la langue source
est I'anglais. Nos résultats expérimentaux montrent que les présenta-
tions d’apprentissage auto-supervisé surpassent de maniere significative
les filterbanks dans des contextes de ressources faibles et moyennes,
lorsque la quantité de données d’entrainement est inférieure a 100 heures.
De plus, nous observons que le réglage fin de ce modele sur les don-
nées d’entrainement AST (de maniére non supervisée) améliore encore
les performances. En outre, dans des parametres de ressources plus
élevés, nous constatons que I’assemblage de modeles AST entrainés avec
des filterbanks et présentations wav2vec conduit a des modeles proches
de I'état de l'art sans utiliser de pré-entrainement ASR. Nos analy-
ses indiquent que les représentations auto-supervisées présentent une
meilleure discrimination des phonemes, des alignements source-cible et
une meilleure robustesse a la variabilité du locuteur.

En outre, nous entrainons sept modeles wav2vec2.0 de tailles différentes
sur différentes combinaisons de données d’entrainement de parole francaise
non étiquetée. Dans notre cadre ouvert et reproductible d’évaluation de
I’apprentissage auto-supervisé a partir de données vocales francaises, ap-
pelé LeBenchmark, nous montrons que, dans un contexte d’AST multi-
lingue, les caractéristiques de parole extraites de ces modeles d’apprentissage
auto-supervisé surpassent marginalement les bases de référence utilisant
des filterbanks, et que le réglage fin des modeles d’apprentissage auto-
supervisé sur les données spécifiques a la tache d’'une maniere supervisée
peut conduire a de grandes améliorations.
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e Chapter Traduction vocale neuronale en ligne. Nous adaptons la
stratégie de décodage wait-k a la traduction de la parole et montrons que
cette stratégie permet d’exploiter des modeles hors ligne pré-entrainés,
basés sur les caracteres ou sur le BPE, de deux paires de langues dif-
férentes, En—De et En—Pt, en mode de décodage en ligne. Nos résul-
tats expérimentaux montrent que cette stratégie peut controler toute la
gamme des régimes de latence, et peut obtenir des compromis BLEU /AL
décents dans un régime de latence de 2 secondes. De plus, nos meilleurs
parametres sont comparables a une base de référence de cascade forte,
sans ré-entrainer les modeles en mode en ligne.

Nous préconisons également le remplacement des encodeurs vocaux basés
sur les BLSTM par des encodeurs basés sur les ULSTM lorsque nos
résultats expérimentaux indiquent que ces derniers sont plus perfor-
mants que les premiers en termes de vitesse d’inférence et de compro-
mis BLEU/AL lorsque 'on utilise la méme stratégie d’encodage, qui
ré-encode depuis le début de la séquence source a chaque fois que de nou-
velles trames sont lues. Nous allons plus loin en proposant une nouvelle
stratégie d’encodage appelée ULSTM overlap-and-compensate qui per-
met d’améliorer la vitesse d’inférence et les performances des encodeurs
vocaux ULSTM. En outre, notre étude de I'impact de la segmentation
sur le compromis BLEU/AL de la stratégie de ULSTM overlap-and-
compensate montre que cette méthode d’encodage spécifique est plus
avantageuse lorsqu’elle utilise une segmentation a intervalles fixes.

Enfin, nous proposons d’affiner le modele hors ligne pré-entrainé dans
un entrainement plus adapté a la traduction en ligne. En particulier,
nos résultats indiquent que cette approche peut améliorer le compromis
BLEU/AL du systeme de traduction en ligne tout en conservant un
faible budget de développement.

Travaux futurs

Dans cette these, nous avons présenté notre tentative de réponse a nos ques-
tions de recherche, qui évoquent également d’autres questions scientifiques in-
téressantes. Nous discutons des perspectives futures et des questions ouvertes
basées sur le travail de cette theése comme suit:

e Traduction vocale neuronale hors ligne. Jusqu’a présent dans cette
these, nous avons présenté des résultats d’AST qui sont en faveur de
I'utilisation d’une architecture basée sur LSTM au lieu de la contrepartie
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basée sur Transformer, qui est principalement utilisée dans les applica-
tions de MT. Ceci doit étre pris avec précaution car nous n’avons pas pu
explorer completement les approches basées sur Transformer en raison
des contraintes de temps imposées par les deux campagnes d’évaluation.
Cependant, nous reconnaissons que les preuves expérimentales recueil-
lies ont induit des conclusions mitigées sur les architectures basées sur
Transformer appliquées a la tache AST. Par exemple, |[Pino et al.| (2019)
montrent que leur modele VGGTRANSFORMER AST surpasse signi-
ficativement le modele VGGLSTM, mais en possédant beaucoup plus de
parametres. De méme, Potapczyk and Przybysz (2020)) et Bahar et al.
(2020), dont les résultats sont supérieurs aux notres dans la piste AST
hors ligne de bout en bout de 'TWSLT 2020, utilisent différentes vari-
antes de 'architecture Transformer pour leurs systemes AST primaires.
Cependant, les différences dans les conditions expérimentales (en termes
de budget de parametres, de quantité de données d’entrainement, etc.)
ne permettent pas une comparaison directe entre l’architecture basée
sur LSTM et celle basée sur Transformer. |Di Gangi et al. (2019bc)
effectuent une comparaison délibérée entre les modeles AST basés sur
LSTM et ceux basés sur Transformer dans des conditions expérimentales
plus justes. Leur conclusion est que méme si les modeles AST basés sur
Transformer peuvent étre entrainés plus rapidement avec le méme bud-
get de calcul, ils nécessitent des traitements supplémentaires, par exem-
ple, des couches 2D CNN supplémentaires et une pénalité de distance,
afin d’obtenir des performances comparables a celles de ’architecture
basée sur LSTM. Pour ces raisons, nous souhaitons mener a ’avenir
une étude plus approfondie des architectures Transformer pour ’AST
de bout en bout.

Plus tot dans cette these, nous avons présenté que nous pouvons ex-
ploiter une plus grande quantité de données vocales non étiquetées pour
améliorer les performances de la tache AST en utilisant des modeles SSL
pré-entrainés. En NMT, les données textuelles non paralleles peuvent
également étre utilisées pour pré-entrainer des modeles de langage con-
textualisés tels que BART (Lewis et al.| (2019)) et mBART (Liu et al.
(2020)) qui peuvent étre utilisés pour améliorer les performances du sys-
teme NMT. |Le et al.| (2021) utilisent un modele mBART pré-entrainé
afin d’initialiser les décodeurs de leurs modeles AST dont les encodeurs
de parole sont initialisés par des modeles ASR pré-entrainés. Ils mon-
trent des résultats prometteurs en affinant ces dorsales avec quelques
couches d’adaptation (Bapna et al.|(2019)) sur leurs données AST mul-
tilingues. Nous trouvons également attrayante 1'idée d’utiliser des mod-
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eles de langage contextualisés pré-entrainés dans la tache AST et nous
aimerions l'inclure dans nos travaux futurs.

Une autre direction future intéressante sur laquelle nous voulons nous
engager est 'adaptation de la traduction automatique par k-nearest-
neighbor (kNN-MT') proposée par Khandelwal et al.| (2021)) a la tache de
traduction de la parole. Cette méthode consiste a utiliser un mécanisme
de récupération des plus proches pour aider le décodeur d’un modele
de MT pré-entrainé a faire une meilleure prédiction du mot cible a une
étape spécifique. Plus précisément, il s’appuie sur 'interpolation de la
distribution de la softmax du token cible a partir du modele de MT pré-
entrainé avec une multinomiale produite par la recherche du plus proche
voisin sur des exemples mis en cache dans un “datastore”. Ce cache est
construit sur des contextes de traduction (c¢’est-a-dire, la source compleéte
et le préfixe des tokens cibles) et est indexé par des états cachés calculés
par le modele de MT pré-entrainé.

Enfin, la plupart des travaux dans la littérature affirment que I'une des
raisons pour lesquelles ils préconisent les approches AST de bout en bout
plutot que les approches en cascade est qu’elles sont moins cotiteuses en
termes de développement, compte tenu du fait que nous devons opti-
miser un seul objectif. Cependant, nous avons constaté qu’il n’est pas
facile pour les modeles de bout en bout d’atteindre les performances
des modeles en cascade si ce n’est en utilisant des méthodes supplémen-
taires telles que 'augmentation des données et la pré-entrainement, qui
ont également un cout. Pour des comparaisons plus justes entre ces
deux types de systemes de traduction de la parole, nous pensons que
tous les cotits devraient étre pris en compte et la maniere de rendre ces
colits comparables est également une question scientifique intéressante
a laquelle nous sommes impatients de répondre.

Apprentissage auto-supervisé de la représentation de la parole. Jusqu'a
présent dans cette these, nous avons montré des résultats prometteurs
en utilisant des modeles SSL pré-entrainés comme extracteurs de car-
actéristiques pour la tache AST. Si nous considérons un modele SSL
pré-entrainé comme un composant supplémentaire de ’encodeur vocal,
nous pouvons dire que ses parametres sont gelés pendant I’entrainement
du modele entier. Cependant, nous ne pouvons pas penser a une raison
particuliere qui nous empéche d’entrainer ce composant avec le modele
AST. Nous notons que cela est quelque peu similaire & la maniere dont
Baevski et al.| (2020b]) affine son modele wav2vec2.0 sur la tache ASR
en aval, en empilant une couche de sortie initialisée de maniere aléatoire
sur le modele wav2vec2.0 pour prédire les tokens cibles. Nous pouvons
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étendre cette idée a la tache AST pour exploiter une large collection
de décodeurs et de couches d’adaptation supplémentaires. Par exemple,
nous pouvons utiliser un modele wav2vec2.0 pré-entrainé sur la parole
source non étiquetée pour initialiser un encodeur de parole et un modele
BART pré-entrainé sur le texte cible pour initialiser le décodeur d’un
modele AST de bout en bout, et entrainer ce modele sur le jeu de don-
nées AST parallele. Nous reconnaissons I'idée similaire dans des travaux
tres récents tels que Gallego et al.| (2021)); [Li et al.| (2021)) et |[Babu et al.
(2021)).

Une autre direction de recherche intéressante que nous voulons découvrir
est I'apprentissage d'un espace latent partagé des représentations acous-
tiques et textuelles. Cette idée est similaire a celles de [Agrawal et al.
(2020) et Han et al.|(2021)). En projetant les représentations textuelles
sur un espace partagé avec les représentations vocales, nous pouvons
guider les représentations vocales pour les rapprocher des représenta-
tions textuelles. Intuitivement, cela nous permet d’exploiter a la fois
des données vocales non étiquetées et des données textuelles monolingues
ou des corpus massifs de MT, qui sont plus abondamment disponibles
que les données paralleles de la parole couplée au texte de traduction
correspondant.

Traduction vocale neuronale en ligne. L’un de nos projets a court terme
est d’expliquer les résultats surprenants présentés dans le chapitre 8, qui
concernent les performances inférieures de la segmentation des frontieres
de mots de 'oracle par rapport a celle de I'intervalle fixe. Méme si des
expériences plus approfondies doivent étre menées pour expliquer ce ré-
sultat, notre hypothese est que notre modele de traduction sous-génere
fortement les tokens cibles car un segment de mot peut étre arbitraire-
ment long. Cela allonge par la suite le délai encouru par le systeme
lors de la traduction de la méme phrase. Pour cette raison, il faudrait
peut-étre étudier une maniere plus dynamique d’utiliser le parametre
d’écriture N.

Nous sommes également intéressés par le développement de systemes de
traduction vocale en ligne plus dynamiques qui, au lieu de fonctionner
sur des intervalles fixes de trames vocales, peuvent détecter les fron-
ticres des mots et prendre des décisions de READ/WRITE en fonction
du contexte observé. Nous avons vu que CTC peut étre exploité pour la
détection des frontieres de mots dans Ren et al.| (2020) dont I'idée simi-
laire peut étre trouvée dans |Zeng et al.| (2021). Pour tenter de détecter
automatiquement les frontieres des mots, Wang et al. (2020c) entrainent
un réseau de scouts (Scout Network) distinct qui effectue la détection



172

des frontieres des mots. Ces informations sont ensuite utilisées pour
guider le systeme ASR en ligne. Nous aimerions adapter cette idée a la
tache de traduction vocale en ligne.

En ce qui concerne les mesures de latence, comme indiqué dans |Ma et al.
(2021), la plupart des mesures de latence actuellement utilisées ne tien-
nent pas compte du temps passé a générer la traduction lors de I’analyse
de la latence. Cette hypothese faible permet a un systeme d’avoir un
bon compromis entre latence et qualité, tout en étant inapplicable dans
des scénarios en temps réel. En outre, bien que la version d’AL ten-
ant compte des calculs prenne en considération le temps réel nécessaire
pour générer chaque jeton de sortie, elle ne permet pas de comparer
directement différents systemes fonctionnant sur différentes configura-
tions matérielles. Par conséquent, la conception d'une nouvelle mesure
de latence qui reflete de maniere informative les latences en temps réel
encourus par les systemes de traduction vocale en ligne et, en méme
temps, la prise en compte des différences en termes de configurations
matérielles de ces systemes est bien envisagée pour nos travaux futurs.
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